CHAPTER 2

Introduction to Part 1 and Part 2.

Chapter 2 consists of two parts, Part 1 ($\S1-\S17$) and Part 2 ($\S18-\S36$). The subject here is what we call a " G_p -field", where $G_p = PSL_2(k_p)$. The definition is as follows. A field L is called a G_p -field over a subfield k if dim_k L = 1 and if G_p acts effectively on L as a group of field automorphisms over k, fulfilling the following conditions ¹:

- (i) For each open compact subgroup $V \subset G_p$, its fixed field L_V is finitely generated over k, and L/L_V is normally and separably algebraic. Moreover, V is topologically isomorphic to the Krull's Galois group of L/L_V .
- (ii) Almost all prime divisors of L_V over k are unramified in L.
- (iii) The fixed field of G_{p} is k. (k is called the constant field of L.)

The motivation for the study of such a field is this:

— If Γ is a discrete subgroup of $G = G_{\mathbf{R}} \times G_{\mathbf{p}}$ with finite-volume-quotient such that the projections $\Gamma_{\mathbf{R}}$, $\Gamma_{\mathbf{p}}$ are dense in $G_{\mathbf{R}}$, $G_{\mathbf{p}}$ respectively, then Γ defines a $G_{\mathbf{p}}$ -field L over the complex number field **C**, and conversely (Theorem 1, §9). Thus Γ and L (over **C**) are equivalent notions. Moreover, it seems that the study of $G_{\mathbf{p}}$ -fields over algebraic number fields ² is crucial for the solution of our problems. Thus we meet our first problem: "Is every $G_{\mathbf{p}}$ -field L over **C** a constant field extension of a $G_{\mathbf{p}}$ -field L_0 over an algebraic number field?" This problem is solved affirmatively in Part 2 (Theorem 4, §18). The readers note, however, that this would not be remarkable enough without "essential uniqueness" of L_0 , which is guaranteed by Theorems 5, 6, 7 (§18, §32, §33) under a certain condition on L. Namely, by Theorem 5, under a condition on L which is always satisfied if Γ is maximal (see §10), there is a unique ³ $G_{\mathbf{p}}$ -field L_{k_0} over an algebraic number field k_0 such that

- (i) L is a constant field extension of L_{k_0} , and
- (ii) if L is a constant field extension of another G_p -field L_k over a field $k \subset \mathbb{C}$, then k contains k_0 and $L_k = L_{k_0} \cdot k$.

Thus if Γ is maximal, then Γ defines a unique G_p -field L_{k_0} over an algebraic number field k_0 . Theorems 6, 7 are some variations of Theorem 5.

¹See also §1. We do not assume that G_p is the full automorphism group of L over k.

²By an algebraic number field, we always mean a *finite* extension of the field of rationals Q.

 $^{{}^{3}}L_{k_{0}}$ is unique not only up to isomorphisms, but also as a G_{p} -invariant subfield of L.