Part 3B. Unique existence of an invariant S -operator on "arithmetic" algebraic function fields (including $G_{\mathfrak{p}}$ -fields) over any field of characteristic zero.

Unique existence of invariant S-operator on ample (arithmetic) L/k .

\S 45.

[1]. In $\S 41$ (Part 3A), we considered the algebraic function fields L/C satisfying (L1), (L2), and proved Theorem 9 for such fields. In particular, we proved that if L is ample, then there exists a unique $Aut_C L$ -invariant S-operator on L. Our purpose here is to generalize this result to the cases where the constant field k of L is an arbitrary field of characteristic zero (instead of C). First, we must define the fields L/k . This is completely parallel to the definition of L/C (§41); namely, our object will be the following field L/k :

DEFINITION . k is any field of characteristic 0, and L is any one-dimensional extension of k not assumed to be finitely generated over k , but assumed to satisfy:

- $(L0)_{k}$ k is algebraically closed in L;
- $(L1)_{k}$ Let \mathcal{L}_{0} be the set of all finitely generated extensions L_{0}/k contained in L such that L/L_{0} is normally algebraic. Then \mathcal{L}_0 is non-empty;
- $(L2)_{k}$ For each $L_{0} \in \mathcal{L}_{0}$ and a prime divisor P_{0} of L_{0}/k , denote by $e_{0}(P_{0})$ the ramification index of P_{0} in L/L_{0} . Then $e_{0}(P_{0})=1$ for almost all P_{0} , and the quantity

(128)
$$
V(L_0) = 2g_0 - 2 + \sum_{P_0} \left(1 - \frac{1}{e_0(P_0)}\right) \deg P_0
$$

is positive, where q_{0} is the genus of L_{0}/k .

REMARK 1. Remark 1 of §41 is also valid here.

REMARK 2. If $k = C$, this coincides with the definition of L/C of §41.

[2]. The arguments of [2] [3] of §41 are also applicable to this general case; so, all definitions and results of $[2]$ $[3]$ $\S 41$ are directly carried over to this case if we only replace C by k. In particular, \mathcal{L}_0 always contains a minimal element (with respect to \subset), and L is called simple if it is unique, and ample (or arithmetic) if it is not unique. Moreover, L is ample if and only if $\text{Aut}_{k}L$ is non-compact. The definitions of $D(L)$ and $d : L \rightarrow D(L)$ are also exactly parallel to the case of $k = C$ ([4] $\S 41$).

REMARK 3. There is one point where we need a slight modification of our argument: In [3] $\S 41$, we used the finiteness of $\text{Aut}\{L_{0},e_{0}\}$ (to prove Proposition 14), and reduced this finiteness proof to the well-known finiteness of $N(\Delta)/\Delta$, where Δ is the fuchsian group corresponding to $\{L_{0}, e_{0}\}$, and $N(\Delta)$ is its normalizer in $G_{\mathbb{R}}$. For the general case, the finiteness of $\text{Aut}\{L_{0},e_{0}\}$ is proved in the following way: First, if the genus g_{0} of \dot{L}_{0} is