Introduction to Part 3A and Part 3B.¹⁹

Here, we shall give only rough ideas of problems and results. For the precise formulation of our results, see the main text.

[Indication] To approach e.g., Theorem 10 (§45 [3]), which is one of our main results, the readers are requested to read §37 and §38 for the definition of S-operators, and then §41 [1]~[3] and §45 [1] [2] for the definition of ample fields L/k. (S-operators and ample fields are two main concepts introduced in this study, and are basic for our purpose. G_p -fields are examples of ample fields.)

The Problems. Let \Re be a compact Riemann surface. Suppose that there are given s + t ($0 \le s, t < \infty$) distinct points $P_1, \ldots, P_t; Q_1, \ldots, Q_s$ on \Re , and s positive integers e_1, \ldots, e_s satisfying

(i)
$$2g-2+t+\sum_{i=1}^{s}\left(1-\frac{1}{e_i}\right)>0,$$

where g is the genus of \Re . Then, as is well-known, there is a unique simply connected (unbounded) covering $\widetilde{\Re}$ of $\Re \setminus \{P_1, \ldots, P_i\}$, isomorphic to the complex upper half plane $\mathfrak{H} = \{\tau \in \mathbb{C} \mid \text{Im } \tau > 0\}$, which is unramified except at Q_i and ramified at Q_i with index e_i $(1 \le i \le s)$:

(ii)

$$\begin{aligned}
\widehat{\mathfrak{R}} &\cong \mathfrak{H} = \{\tau \in \mathbb{C} \mid \operatorname{Im} \tau > 0 \} \\
\downarrow \\
\mathfrak{R} &= \{P_1, \cdots, P_t\}.
\end{aligned}$$

Fix an isomorphism $\widetilde{\Re} \simeq 5$, and consider τ as a multivalued function on $\Re \setminus \{P_1, \ldots, P_t\}$. Let $dx \neq 0$ be any meromorphic differential (1-form) on \Re (which may not be exact), and put $\tau_x = \frac{d\tau}{dx}, \tau_{\underline{xx} \ldots \underline{x}} = \frac{d}{dx} \tau_{\underline{xx} \ldots \underline{x}}$ $(i \geq 1)$, so that $\tau_x, \tau_{\underline{xx}}, \ldots$ are multivalued meromorphic functions on $\Re \setminus \{P_1, \ldots, P_t\}$. Put

(iii)
$$A = -\frac{2\tau_x \cdot \tau_{xxx} - 3\tau_{xx}^2}{\tau_x^2}.$$

Then it is well-known (classically) that A is a univalent meromorphic function on \Re . Moreover, if we consider A as known, and (iii) as a differential equation for τ , then all the solutions of (iii) are $\frac{a\tau+b}{c\tau+d}$, where $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ are any elements of $GL_2(\mathbb{C})$. Since Aut $\mathfrak{H} = PSL_2(\mathbb{R})$, this shows that A depends only on dx, and is independent of the isomorphism $\widetilde{\Re} \simeq \mathfrak{H}$. So, the map

(iv)
$$dx \mapsto A$$

¹⁹The main contents of these Parts are published in Additional References [16]