Part 2. ${ }^{10}$ Detailed study of elements of Γ with parabolic and elliptic real parts; the general formula for $\zeta_{\Gamma}(u)$.

Let Γ be a discrete subgroup of $G=G_{\mathbf{R}} \times G_{p}=P S L_{2}(\mathbf{R}) \times P S L_{2}\left(k_{p}\right)$ with finite volume quotient G / Γ and with dense image of projection in each component of G. In the previous part of this chapter, we defined the ζ-function

$$
\zeta_{\Gamma}(u)=\prod_{P \in \phi(\Gamma)}\left(1-u^{\operatorname{deg} P}\right)^{-1}
$$

for such a group Γ (§6) and carried out its computation under the two assumptions: (a) G / Γ is compact, (b) Γ is torsion-free. (See Theorems 1, 2).

In the following Part 2, we shall drop the above two assumptions (a), (b), and after studying in detail the elements of Γ with parabolic real parts ($\S 25 \sim \S 28$, Theorem 3) and those with elliptic real parts (including in particular the torsion elements of $\Gamma ;$ §29~ §34, Theorems $4 \sim 6$), we shall proceed to prove a general formula for $\zeta_{\Gamma}(u)$ by generalizing the previous computations ($\S 35 \sim \S 38$, Theorem 7). The main results are as follows:

1. Let $\gamma \in \Gamma$ be such that γ_{R} is parabolic. ${ }^{11}$ Let H^{0} be the centralizer of γ and let H be the normalizer of H^{0} (both considered in Γ). Then (i) $k_{p}=\mathbf{Q}_{p}$ holds, (ii) H is conjugate in $G_{\mathbf{R}} \times P L_{2}\left(\mathbf{Z}_{p}\right)$ to the group

$$
B^{(d)}=\left\{\left.\left(\begin{array}{cc}
p^{d k} & b \tag{102}\\
0 & p^{-d k}
\end{array}\right) \right\rvert\, k \in \mathbf{Z}, b \in \mathbf{Z}^{(p)}\right\}
$$

(where d is a positive integer well-defined by H), and by this, H^{0} corresponds to the subgroup $\left(\begin{array}{cc}1 & \mathbf{Z}^{(p)} \\ 0 & 1\end{array}\right)$ of $B^{(d)}$ (Theorem 3, §25). By this theorem we can derive everything we need about such elements γ.
2. Let $\gamma \in \Gamma$ be such that γ_{R} is elliptic. ${ }^{12}$ Put $\Gamma^{0}=\Gamma \cap\left(G_{R} \times V\right)$ with $V=P S L_{2}\left(O_{p}\right)$, and for each $l \geq 0$ put $T^{l}=\Gamma \bigcap\left\{G_{\mathbf{R}} \times V\left(\begin{array}{cc}\pi^{d} & 0 \\ 0 & \pi^{-l}\end{array}\right) V\right\}$, π being a prime element of k_{p}. Then our results here are the following:
(i) we parametrize the set of all Γ^{0}-conjugacy classes contained in $\{\gamma\}_{\Gamma}$ in a nice way as, say,

$$
\{\gamma\}_{\Gamma}=\bigcup_{k, \mu}\left\{\gamma_{k \mu}\right\}_{\Gamma^{0}} ; \quad k=0,1,2, \cdots ; \quad \mu=1, \cdots, n_{k} ;
$$

[^0]
[^0]: ${ }^{10}$ The author regrets that, despite his promise, he has failed to give a computation of L-functions $L_{\Gamma}(u, \chi)$ here. The reason is that when χ is not a real character, his definition of $L_{\Gamma}(u, \chi)$ was not adequate, and it still remains for him to find its best definition.
 ${ }^{11}$ An element $x \in G_{R}$ is called parabolic if its eigenvalues are $\pm\{1,1\}$ and $x \neq 1$.
 ${ }^{12}$ An element $x \in G_{R}$ is called elliptic if its eigenvalues are imaginary.

