CHAPTER 1

Part 1. The group Γ and its ζ-function.

In Part 1 of this chapter, we shall define the ζ-function

$$
\zeta_{\Gamma}(u)=\prod_{P}\left(1-u^{\operatorname{deg} P}\right)^{-1}
$$

of Γ, and prove that

$$
\begin{align*}
\zeta_{\Gamma}(u) & =\frac{\prod_{i=1}^{g}\left(1-\pi_{i} u\right)\left(1-\pi_{i}^{\prime} u\right)}{(1-u)\left(1-q^{2} u\right)} \times(1-u)^{(q-1)(g-1)} ; \tag{20}\\
q & =N \mathfrak{p}, g \geq 2, \pi_{i} \pi_{i}^{\prime}=q^{2}(1 \leq i \leq g)
\end{align*}
$$

holds, if G / Γ is compact and Γ is torsion-free. We shall also prove the inequality; $\left|\pi_{i}\right|,\left|\pi_{i}^{\prime}\right| \leq$ $q^{2}, \pi_{i}, \pi_{i}^{\prime} \neq 1, q^{2}$, by applying Lemma 10 (M.Kuga), $\S 21$. These results, particularly the existence of the factor $(1-u)^{(q-1)(g-1)}$, give a starting point of our problems described in the introduction. Our formula (20) is, modulo some group theory of $P L_{2}\left(k_{p}\right)$, a consequence of Eichler-Selberg trace formula for the Hecke operators in the space of certain automorphic forms of weight 2. However, the proof, starting at Eichler-Selberg formula and ending at (20), is by no means simple, mainly because we do not have a simple proof of Lemma 3 (§13). ${ }^{1}$ Finally, we point out that there is also a difference in the standpoint; Eichler-Selberg's left side of the formula comes to the right side of ours; (20). For us, the subject is the set of "elliptic Γ-conjugacy classes", and not the Hecke operator.

We shall begin with the definition of the group Γ.

Discrete subgroup Γ.

§1. Let

$$
\begin{equation*}
G=P S L_{2}(\mathbf{R}) \times P S L_{2}\left(k_{p}\right) \tag{1}
\end{equation*}
$$

be considered as a topological group, and for each subset S of G, we denote by $S_{\mathbf{R}}$ resp. S_{p} the set-theoretical projections of S to R-component (i.e. the first component) resp.

[^0]
[^0]: ${ }^{1}$ We can also prove (20) (for $\mathfrak{p} \nmid 2$) by using the spectral decomposition of $L^{2}(G / \Gamma)$.

