1. Group presentations

1. Group presentations.

A group presentation gives a means of specifying a group up to isomorphism. It is the basis of the now "classical" combinatorial theory of groups. In Section 2, we will give a more geometrical intepretation of these constructions.

1.1. Notation.

2

Throughout the course, we will use the following fairly standard notation relating to groups.

 $G \subseteq \Gamma$: G is a subset of Γ .

 $G \leq \Gamma$: G is a subgroup of Γ .

 $G \triangleleft \Gamma$: G is a normal subgroup of Γ .

 $G \cong \Gamma$: G is isomorphic to Γ .

 $1 \in \Gamma$ is the identity element of Γ .

 $[\Gamma:G]$ is the index of G in Γ .

We write |A| for the cardinality of a set A. In other words, |A| = |B| means that there is a bijection between A and B. (This should not be confused with the fairly standard notation for "realisations" of complexes, used briefly in Section 2.)

We use N, Z, Q, R, C respectively for the natural numbers (including 0), the intergers, and the rational, real and complex numbers.

We shall generally view \mathbb{Z}^n and \mathbb{R}^n from different perspectives. We shall normally think of \mathbb{Z}^n as group under addition, and \mathbb{R}^n as a metric space with the euclidean norm.

1.2. Generating sets.

Let Γ be a group and $A \subseteq \Gamma$. Let $\langle A \rangle$ be the intersection of all subgroups of Γ containing the set A. Thus, $\langle A \rangle$ is the unique smallest subgroup of Γ containing the set A. In other words, it is characterised by the following three properties:

(G1) $A \subseteq \langle A \rangle$, (G2) $\langle A \rangle \leq \Gamma$, and