Log del Pezzo surfaces of index ≤ 2 and Smooth Divisor Theorem

1.1. Basic definitions and notation

Let Z be a normal algebraic surface, and K_{Z} be a canonical Weil divisor on it. The surface Z is called \mathbb{Q}-Gorenstein if a certain positive multiple of K_{Z} is Cartier, and \mathbb{Q}-factorial if this is true for any Weil divisor D. These properties are local: one has to require all singularities to be \mathbb{Q}-Gorenstein, respectively \mathbb{Q}-factorial.

Let us denote by $Z^{1}(Z)$ and $\operatorname{Div}(Z)$ the groups of Weil and Cartier divisors on Z. Assume that Z is \mathbb{Q}-factorial. Then the groups $Z^{1}(Z) \otimes \mathbb{Q}$ and $\operatorname{Div}(Z) \otimes \mathbb{Q}$ of \mathbb{Q}-Cartier divisors and \mathbb{Q}-Weil divisors coincide. The intersection form defines natural pairings

$$
\begin{aligned}
& \operatorname{Div}(Z) \otimes \mathbb{Q} \times \operatorname{Div}(Z) \otimes \mathbb{Q} \rightarrow \mathbb{Q} \\
& \operatorname{Div}(Z) \otimes \mathbb{R} \times \operatorname{Div}(Z) \otimes \mathbb{R} \rightarrow \mathbb{R}
\end{aligned}
$$

Quotient groups modulo kernels of these pairings are denoted $N_{\mathbb{Q}}(Z)$ and $N_{\mathbb{R}}(Z)$ respectively; if the surface Z is projective, they are finite-dimensional linear spaces. The Kleiman-Mori cone is a convex cone $\overline{\mathrm{NE}}(Z)$ in $N_{\mathbb{R}}(Z)$, the closure of the cone generated by the classes of effective curves.

Let D be a \mathbb{Q}-Cartier divisor on Z. We will say that D is ample if some positive multiple is an ample Cartier divisor in the usual sense. By Kleiman's criterion [Kle66], for this to hold it is necessary and sufficient that D defines a strictly positive linear function on $\overline{\mathrm{NE}}(Z)-\{0\}$.

One says that the surface Z has only log terminal singularities if it is \mathbb{Q}-Gorenstein and for one (and then any) resolution of singularities $\pi: Y \rightarrow Z$, in a natural formula $K_{Y}=\pi^{*} K_{Z}+\sum \alpha_{i} F_{i}$, where F_{i} are irreducible divisors and $\alpha_{i} \in \mathbb{Q}$, one has $\alpha_{i}>-1$. The least common multiple of denominators of α_{i} is called the index of Z.

