Chapter 10

Gauss-Manin Connections

10.1 Fibration

Let $\mathcal{A} \in \mathcal{A}_{n}\left(\mathbb{C}^{\ell}\right)$ be essential. We fix \mathcal{A} in the rest of this section and write $B=B_{\mathcal{A}}$. We saw in the previous section that B may be considered a moduli space of the family of essential simple affine ℓ-arrangements which are combinatorially equivalent to \mathcal{A}. Recall that t are homogeneous coordinates for $\left(\left(\mathbb{C P}^{\ell}\right)^{*}\right)^{n}$. Let $\mathbf{u}=\left(u_{1}, \ldots, u_{\ell}\right)$ be standard coordinates for \mathbb{C}^{ℓ}. Define

$$
\mathrm{M}=\left\{(\mathbf{u}, \mathbf{t}) \in \mathbb{C}^{\ell} \times\left(\left(\mathbb{C P}^{\ell}\right)^{*}\right)^{n} \mid \mathbf{t} \in \mathrm{B}, t_{i}^{(0)}+\sum_{j=1}^{\ell} t_{i}^{(j)} u_{j} \neq 0(i=1, \ldots, n)\right\}
$$

Let

$$
\pi: M \longrightarrow \mathrm{~B}
$$

be the projection defined by $\pi(\mathbf{u}, \mathbf{t})=\mathbf{t}$. Then the fiber $\mathrm{M}_{\mathbf{t}}=\pi^{-1}(\mathbf{t})$ is the complement of the affine arrangement $\mathcal{A}_{\mathbf{t}}$ whose hyperplanes are defined by $\alpha_{i}=$ $t_{i}^{(0)}+\sum_{j=1}^{\ell} t_{i}^{(j)} u_{j}(i=1, \ldots, n)$. Thus $\pi: \mathrm{M} \longrightarrow \mathrm{B}$ is the complete family of essential simple affine arrangements in \mathbb{C}^{ℓ} which are combinatorially equivalent to \mathcal{A}. A result of Randell [Ra] implies that π is a fiber bundle over (the smooth part of) B.

Recall that d is the exterior differential operator with respect to the coordinates $\mathbf{u}=\left(u_{1}, \ldots, u_{\ell}\right)$ of \mathbb{C}^{ℓ} in the fiber, $\omega_{i}=d \log \alpha_{i}=d \alpha_{i} / \alpha_{i}$ for $1 \leq i \leq n$ and

$$
\omega_{\lambda}=\sum_{i=1}^{n} \lambda_{i} \omega_{i}, \quad \nabla_{\lambda}: \Omega_{M}^{p} \rightarrow \Omega_{M}^{p+1}, \quad \nabla_{\lambda} \eta=d \eta+\omega_{\lambda} \wedge \eta
$$

In this section we compute covariant derivatives of differential forms in the fiber along the direction of the base.

