Chapter 10

Gauss-Manin Connections

10.1 Fibration

Let $\mathcal{A} \in \mathcal{A}_n(\mathbb{C}^{\ell})$ be essential. We fix \mathcal{A} in the rest of this section and write $\mathsf{B} = \mathsf{B}_{\mathcal{A}}$. We saw in the previous section that B may be considered a moduli space of the family of essential simple affine ℓ -arrangements which are combinatorially equivalent to \mathcal{A} . Recall that \mathbf{t} are homogeneous coordinates for $((\mathbb{C}\mathbb{P}^{\ell})^*)^n$. Let $\mathbf{u} = (u_1, \ldots, u_{\ell})$ be standard coordinates for \mathbb{C}^{ℓ} . Define

$$\mathsf{M} = \{ (\mathbf{u}, \mathbf{t}) \in \mathbb{C}^{\ell} \times ((\mathbb{C}\mathbb{P}^{\ell})^{*})^{n} \mid \mathbf{t} \in \mathsf{B}, \ t_{i}^{(0)} + \sum_{j=1}^{\ell} t_{i}^{(j)} u_{j} \neq 0 \ (i = 1, \dots, n) \}.$$

Let

$$\pi: \mathsf{M} \longrightarrow \mathsf{B}$$

be the projection defined by $\pi(\mathbf{u}, \mathbf{t}) = \mathbf{t}$. Then the fiber $\mathsf{M}_{\mathbf{t}} = \pi^{-1}(\mathbf{t})$ is the complement of the affine arrangement $\mathcal{A}_{\mathbf{t}}$ whose hyperplanes are defined by $\alpha_i = t_i^{(0)} + \sum_{j=1}^{\ell} t_i^{(j)} u_j$ (i = 1, ..., n). Thus $\pi : \mathsf{M} \longrightarrow \mathsf{B}$ is the complete family of essential simple affine arrangements in \mathbb{C}^{ℓ} which are combinatorially equivalent to \mathcal{A} . A result of Randell [Ra] implies that π is a fiber bundle over (the smooth part of) B .

Recall that d is the exterior differential operator with respect to the coordinates $\mathbf{u} = (u_1, \ldots, u_\ell)$ of \mathbb{C}^ℓ in the fiber, $\omega_i = d \log \alpha_i = d\alpha_i / \alpha_i$ for $1 \le i \le n$ and

$$\omega_{\lambda} = \sum_{i=1}^{n} \lambda_{i} \omega_{i}, \qquad \nabla_{\lambda} : \Omega_{M}^{p} \to \Omega_{M}^{p+1}, \qquad \nabla_{\lambda} \eta = d\eta + \omega_{\lambda} \wedge \eta$$

In this section we compute covariant derivatives of differential forms in the fiber along the direction of the base.