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§1. Introduction

Let Γ be a group. A subgroup E of Γ is called quasi-normal (or
commensurated) in Γ if for any γ ∈ Γ, the group E ∩ γEγ−1 is of finite
index in both E and γEγ−1. In this case, the modular homomorphism
m : Γ → R

×
+ into the multiplicative group R

×
+ of positive real numbers is

defined by the formula

m(γ) = [E : E ∩ γEγ−1][γEγ−1 : E ∩ γEγ−1]−1

for γ ∈ Γ. This m depends only on the commensurability class of E,
where two subgroups of Γ are called commensurable if their intersection
is of finite index in both of them. If that class is characteristic in Γ, then
m is invariant under any automorphism of Γ, and we can derive valuable
information on Γ from m. With regard to the Baumslag-Solitar (BS )
group defined by the presentation

BS(p, q) = 〈 a, t | tapt−1 = aq 〉,

where p and q are integers with 2 ≤ p ≤ |q|, the modular homomor-
phism m is associated to the quasi-normal subgroup 〈a〉, and it turns
out that the image of m and hence the ratio |q/p| is an isomorphism
invariant among the BS groups. In [Ki2, Theorem 1.2], we realized
this for transformation-groupoids from the BS groups. Namely, to the
pair of a discrete measured groupoid and its quasi-normal subgroupoid,
the modular cocycle is associated, and among transformation-groupoids
from the BS groups, its Mackey range is shown to be an isomorphism
invariant of the groupoid. This work was inspired by construction of the
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