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§1. Introduction

Let (X,ω) be an affine symplectic variety. By definition (cf. [2]), X
is an affine normal variety and ω is a holomorphic symplectic 2-form on
the regular locus Xreg of X such that it extends to a holomorphic (not

necessarily symplectic) 2-form on a resolution X̃ of X. In this article
we also assume that X has a C∗-action with positive weights and that
ω is homogeneous with respect to the C∗-action. More precisely, the
affine ring R of X is positively graded: R = ⊕i≥0Ri with R0 = C and
there is an integer l such that t∗ω = tl · ω for all t ∈ C∗. Since X
has canonical singularities, we have l > 0 ([8], Lemma (2.2)). Affine
symplectic varieties are constructed in various ways such as nilpotent
orbit closures of a semisimple complex Lie algebra (cf. [4]), Slodowy
slices to nilpotent orbits ([9]) or symplectic reductions of holomorphic
symplectic manifolds with Hamiltonian actions. These varieties come up
with C∗-actions and the above assumption of the C∗-action is satisfied
in all examples we know.

In the previous article [8] we posed a question:

Problem. Is the fundamental group π1(Xreg) finite ?

Such fundamental groups are explicitly calculated by a group-theoretic
method when X is a nilpotent orbit closure (cf. [4]). However no general
results are known.

In this short note we give a partial answer to this question. Namely
we have

Theorem 1.1. The algebraic fundamental group π̂1(Xreg) is a finite
group.
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