On the double zeta values

Pierre Cartier

§0. Introduction

In a very important recent paper [1], F. Brown solved long standing conjectures about multiple zeta values (here abbreviated as MZV). In particular, he showed that any such series

$$
\begin{equation*}
\zeta\left(n_{1}, \ldots, n_{r}\right)=\sum_{0<k_{1}<\ldots<k_{r}} \frac{1}{k_{1}^{n_{1}} \ldots k_{r}^{n_{r}}} \tag{1}
\end{equation*}
$$

(with integers $n_{1} \geq 1, \ldots, n_{r-1} \geq 1, n_{r} \geq 2$) can be expressed as a linear combination with rational coefficients of special values $\zeta\left(m_{1}, \ldots, m_{s}\right)$ where each m_{i} is 2 or 3 . The uniqueness of such a linear combination is beyond reach for the moment, but F. Brown [1], after A. B. Goncharov [2] has promoted the MZV's to motivic multizeta values $\zeta^{\mathfrak{m}}\left(n_{1}, \ldots, n_{r}\right)$, and shown that the $\zeta^{\mathfrak{m}}\left(m_{1}, \ldots, m_{s}\right)$'s with m_{i} in $\{2,3\}$ form a rational basis of the space of the motivic MZV's.

In the course of his proof, he needs an identity of the form

$$
\begin{equation*}
H(a, b)=\sum_{i=1}^{k} \alpha_{i}^{a, b} \zeta(2 i+1) H(k-i) \tag{2}
\end{equation*}
$$

with $k=a+b+1$ and 1

$$
\begin{equation*}
H(m):=\zeta(\underbrace{2, \ldots, 2}_{m}), \quad H(a, b):=\zeta(\underbrace{2, \ldots, 2}_{a}, 3, \underbrace{2, \ldots, 2}_{b}) . \tag{3}
\end{equation*}
$$

F. Brown was not able to give an explicit formula for the rational coefficients $\alpha_{i}^{a, b}$, but this was supplied by D. Zagier [5], thus completing the proof by F. Brown. It is known since Euler that, for a given integer $m \geq 1$, the numbers $H(m) / \pi^{2 m}, \zeta(2 m) / \pi^{2 m}$ and $\zeta(2)^{m} / \pi^{2 m}$ are all rational, and $\zeta(0)=-\frac{1}{2}$. So in the statement of formula (2), one

Received July 14, 2011.
Revised December 12, 2011.
${ }^{1}$ We use the convention $H(0)=1$.

