Advanced Studies in Pure Mathematics 61, 2011 New Structures and Natural Constructions in Mathematical Physics pp. 349–386

Perverse coherent sheaves on blow-up. I. A quiver description

Hiraku Nakajima and Kōta Yoshioka

§ Introduction

This is the first of three papers studying moduli spaces of a certain class of coherent sheaves, which we call *stable perverse coherent sheaves*, on the blowup of a projective surface. They are used to relate usual moduli spaces of stable sheaves on a surface and its blowup.

Let us give the definition for general case though we will consider only framed sheaves on the blowup $\widehat{\mathbb{P}}^2$ of the projective plane \mathbb{P}^2 in this paper. Let $p: \widehat{X} \to X$ be the blowup of a smooth projective surface Xat a point. Let C be the exceptional divisor. A stable perverse coherent sheaf E on \widehat{X} , with respect to an ample line bundle H on X, is

- (1) E is a coherent sheaf on \widehat{X} ,
- (2) Hom $(E(-C), \mathcal{O}_C) = 0$,
- (3) $\operatorname{Hom}(\mathcal{O}_C, E) = 0$,
- (4) p_*E is slope stable with respect to H.

We will consider the moduli spaces of coherent sheaves E on \hat{X} such that E(-mC) is stable perverse coherent for $m \ge 0$. This depends on m.

Let us first explain how we find the definition of stable perverse coherent sheaves. Our definition comes from two sources. The first one is Bridgeland's paper [1], from which we take the name "perverse coherent" sheaves. He introduced a new t-structure on the derived category $D^b(Coh Y)$ of coherent sheaves on Y for a birational morphism $f: Y \to X$ such that (1) $\mathbf{R}f_*(\mathcal{O}_Y) = \mathcal{O}_X$ and (2) dim $f^{-1}(x) \leq 1$ for any $x \in X$. An object $E \in D^b(Coh Y)$ is called *perverse coherent* if it is in the heart Per(Y/X) of the t-structure. Then he considered the moduli spaces of perverse ideal sheaves which are subobjects of the structure

Received February 5, 2008.

Revised June 5, 2008.