On the contact structure of a class of real analytic germs of the form $f \bar{g}$

Dedicated to Professor Mutsuo Oka on the occasion of his 60th birthday

Masaharu Ishikawa

§1. Introduction

Let $(h, O):\left(\mathbb{C}^{n+1}, O\right) \rightarrow(\mathbb{C}, 0)$ be a holomorphic germ with $h(O)=$ 0 , where O is the origin of \mathbb{C}^{n+1}. The intersection L_{h} of $h^{-1}(0)$ with a sphere $S_{\varepsilon}^{2 n+1}$ centered at $O \in \mathbb{C}^{n+1}$ with sufficiently small radius $\varepsilon>0$ is called the link of (h, O). In [15], J. Milnor proved that the argument map $h /|h|: S_{\varepsilon}^{2 n+1} \backslash L_{h} \rightarrow S^{1}$ is a locally trivial fibration and that, under a certain condition, a real analytic germ also defines a locally trivial fibration over S^{1}. There are several studies concerning this condition, see for instance [$25, \mathrm{Ch}$. VII and VIII] and the references therein.

In [19], A. Pichon studied real analytic germs of the form $(f \bar{g}, O)$, where (f, O) and (g, O) are holomorphic germs from $\left(\mathbb{C}^{2}, O\right)$ to $(\mathbb{C}, 0)$ with isolated singularities and with no common branches. Here \bar{g} represents the conjugation of g. In particular, a condition for the link $L_{f \bar{g}}$ to be fibred is given in terms of the multiplicities on resolution graphs of (f, O) and (g, O). Then she and J. Seade proved in [20] that $f \bar{g} /|f \bar{g}|: S_{\varepsilon}^{3} \backslash L_{f \bar{g}} \rightarrow S^{1}$ is a locally trivial fibration if and only if $(f \bar{g}, O)$ satisfies the fibrability condition in [19] in more general context. In [3], A. Bodin and Pichon studied the multilinks of meromorphic functions of the form f / g and represented the fibrability condition for $(f \bar{g}, O)$ in terms of special fibres of f / g.

Let M be an oriented, closed, smooth 3-manifold. A fibration from a link complement of M to S^{1} is called an open book decomposition of

Received January 16, 2008.
Revised October 24, 2008.
2000 Mathematics Subject Classification. 57M50, 57R17, 32S55, 57M25.
Key words and phrases. Contact structure, open book, quasipositive surface.

This work is supported by MEXT, Grant-in-Aid for Young Scientists (B) (No. 19740029).

