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§1. Introduction 

Using the submanifold quantum mechanical scheme [dC, JK], the 
restricted Dirac operator for a k dimensional spin (k-spin) submanifold 
S immersed in Euclidean space En (0 < k < n) was defined [BJ, Mal
lO]. We call it the submanifold Dirac operator. The zero modes of the 
Dirac operator express the local properties of the submanifold, such as 
the Frenet-Serret and generalized Weierstrass formulae. We shall give a 
survey of this method from the point of view of quantum physics. 

As motivation, we recall three facts. 

(1) Let us consider an element Q of a ring of operators P defined over a 
Riemannian manifold M. The concept of the adjoint of Q is very subtle, 
as we shall explain briefly, following the book of Bjork (see [Remark 
1.2.16 in Bj]). Assume that M is Riemannian. For smooth functions h 
and fz whose support is compact, we consider the following integral as 
a bilinear form of h and fz: 

(1-1) JM dvol (hQfz). 

What is the natural adjoint of Q? One might regard the action on h 
obtained by integration by parts as defining the adjoint. However the 
measure here depends on the local coordinates. 
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