Advanced Studies in Pure Mathematics 51, 2008 Surveys on Geometry and Integrable Systems pp. 189–233

Special Lagrangian 3-folds and integrable systems

Dominic Joyce

§1. Introduction

This is the sixth in a series of papers [17, 18, 19, 20, 21] constructing explicit examples of special Lagrangian submanifolds (SL *m*-folds) in \mathbb{C}^m . The principal motivation for the series is to study the singularities of SL *m*-folds, especially when m = 3. This paper also has a second objective, which is to connect SL *m*-folds with the theory of integrable systems, and to arouse interest in special Lagrangian geometry within the integrable systems community.

We begin in §2 with a brief introduction to special Lagrangian submanifolds in \mathbb{C}^m , which are a class of real *m*-dimensional minimal submanifolds in \mathbb{C}^m , defined using calibrated geometry. Section 3 then gives a rather longer introduction to harmonic maps $\psi : S \to \mathbb{CP}^{m-1}$, where S is a Riemann surface. Such maps form an integrable system, and have a complex and highly-developed theory involving the Toda lattice equations, loop groups, and classification using spectral curves.

Section 4 explains the connection of this with special Lagrangian geometry. Let N be a special Lagrangian cone in \mathbb{C}^3 , and set $\Sigma = N \cap S^5$. Then Σ is a minimal Legendrian surface in S^5 , and so the image of a conformal harmonic map $\phi : S \to S^5$ from a Riemann surface S. The projection $\psi = \pi \circ \phi$ of ϕ from S^5 to \mathbb{CP}^2 is also conformal and harmonic, with Lagrangian image.

Thus, ψ can be analyzed in the integrable systems framework of §3. As the image of ψ is Lagrangian there is a simplification, in which the SU(3) Toda lattice equation reduces to the *Tzitzéica equation*, and the spectral curve acquires an extra symmetry. We use the integrable

Received January 30, 2001.

Revised October 1, 2001; August 22, 2007 (updated).