Advanced Studies in Pure Mathematics 46, 2007 Singularities in Geometry and Topology 2004 pp. 67–76

Motivic sheaves and intersection cohomology

Masaki Hanamura

We propose a motivic refinement of a result in [BBFGK]. The formulation involves the notion of intersection Chow group, introduced by A. Corti and the author.

We are very grateful to the referee for useful suggestions.

§1. Intersection Chow groups and lifting theorems

We consider quasi-projective varieties over $k = \mathbb{C}$. For a quasiprojective variety Z, $\operatorname{CH}_s(Z)$ denotes the Chow group of s-cycles on Z tensored with \mathbb{Q} ; if Z is smooth, $\operatorname{CH}^r(Z) := \operatorname{CH}_{\dim Z - r}(Z)$. We consider only constructible sheaves of \mathbb{Q} -vector spaces. The singular (co-)homology, Borel-Moore homology, and intersection cohomology are those with \mathbb{Q} -coefficients.

Relative canonical filtration.

The study of filtration on the Chow group of a smooth projective variety was started by Bloch and continued by several people; of most relevance to us now are the works of Beilinson, Murre and Shuji Saito. Beilinson explained the filtration in terms of the conjectural framework of mixed motives. Murre proposed a set of conjectures, Murre's conjectures, on a decomposition of the diagonal class in the Chow ring of self-correspondences; he relates the decomposition to the filtration of Chow groups.

For X a smooth projective variety, its Chow group of codimension r cycles $\operatorname{CH}^r(X)$ should have a filtration F^{\bullet} such that $\operatorname{CH}^r(X) = F^0 \operatorname{CH}^r(X)$, $F^1 \operatorname{CH}^r(X)$ is the homologically trivial part, $F^2 \operatorname{CH}^r(X)$ is perhaps the kernel of Abel-Jacobi map, and so on. The subquotient $\operatorname{Gr}_F^{\nu} \operatorname{CH}^r(X)$ should in some way be determined by cohomology $H^{2r-\nu}(X, \mathbb{Q})$.

Received April 1, 2005 Revised August 25, 2005