Advanced Studies in Pure Mathematics 44, 2006 Potential Theory in Matsue pp. 283–289

Representations of nonnegative solutions for parabolic equations

Minoru Murata

§1. Introduction

This paper is an announcement of results on integral representations of nonnegative solutions to parabolic equations, and gives a representation theorem which is general and applicable to many concrete examples for establishing explicit integral representations.

We consider nonnegative solutions of a parabolic equation

(1.1) $(\partial_t + L)u = 0 \quad \text{in} \quad D \times (0, T),$

where T is a positive number, D is a non-compact domain of a Riemannian manifold M, $\partial_t = \partial/\partial t$, and L is a second order elliptic operator on D. We study the problem:

Determine all nonnegative solutions of the parabolic equation (1.1). This problem is closely related to the Widder type uniqueness theorem for a parabolic equation, which asserts that any nonnegative solution is determined uniquely by its initial value. (For Widder type uniqueness theorems, see [1], [5], [10], [13] and references therein.) We say that $[\mathbf{UP}]$ (i.e., uniqueness for the positive Cauchy problem) holds for (1.1) when any nonnegative solution of (1.1) with zero initial value is identically zero. When [UP] holds for (1.1) the answer to our problem is extremely simple: for any nonnegative solution of (1.1) there exists a

Received March 22, 2005.

Revised April 21, 2005.

²⁰⁰⁰ Mathematics Subject Classification. 31C35, 35C15, 31C12, 35J99, 35K15, 35K99, 58J99.

Key words and phrases. parabolic equation, nonnegative solution, integral representation, Martin boundary, intrinsic ultracontractivity, semismall perturbation.