Submanifolds with Degenerate Gauss Mappings in Spheres

Goo Ishikawa, Makoto Kimura and Reiko Miyaoka

§1. Introduction

Let M be a connected l-dimensional C^{∞} manifold. An immersion $f: M \rightarrow S^{n}$ to the sphere (resp. $f: M \rightarrow \mathbb{R} \mathbb{P}^{n}$ to the projective space) is called tangentially degenerate (or, developable, or, strongly parabolic) if its Gauss mapping $\gamma: M \rightarrow G_{l+1}\left(\mathbb{R}^{n+1}\right)$ has rank $<l$. Here $G_{l+1}\left(\mathbb{R}^{n+1}\right)$ denotes the Grassmannian of $(l+1)$-dimensional linear subspaces in \mathbb{R}^{n+1}. A submanifold of S^{n} or $\mathbb{R} \mathbb{P}^{n}$ is called tangentially degenerate (or, developable, or, strongly parabolic) if so is the inclusion.

In the present paper we construct new examples of tangentially degenerate compact submanifolds satisfying the equality for the inequality proved by Ferus [19]. Remark that, if we have a tangentially degenerate immersed submanifold in S^{n} then, via the canonical double covering $\pi: S^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}$, we have a tangentially degenerate immersed submanifold in $\mathbb{R} \mathbb{P}^{n}$.

Remark also that the notion of tangential degeneracy is invariant under the projective transformations. Recall that $\mathbb{R} \mathbb{P}^{n}=G_{1}\left(\mathbb{R}^{n+1}\right)$ and $S^{n}=\widetilde{G}_{1}\left(\mathbb{R}^{n+1}\right)$ (oriented Grassmannian) have natural projective structures, respectively. In fact, M. A. Akivis clearly stated in [3] and [4] that the study of tangentially degenerate submanifolds belongs to projective geometry. Then our standpoint is as follows: We do not need the metric structures on them for the formulation of the results, while, for the proofs of the results, we use freely the metric structures.

Let M^{l} be compact and connected, and $f: M \rightarrow S^{n}$ a tangentially degenerate immersion. Denote by r the maximal rank of the Gauss

[^0]
[^0]: Received December 8, 2000.
 Revised February 5, 2001.
 Partially supported by Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science No. 10440013 (the first author), No. 11640057 (the second author), No. 12640087 (the third author).

