Advanced Studies in Pure Mathematics 37, 2002 Lie Groups, Geometric Structures and Differential Equations — One Hundred Years after Sophus Lie pp. 115–149

Submanifolds with Degenerate Gauss Mappings in Spheres

Goo Ishikawa, Makoto Kimura and Reiko Miyaoka

§1. Introduction

Let M be a connected l-dimensional C^{∞} manifold. An immersion $f: M \to S^n$ to the sphere (resp. $f: M \to \mathbb{RP}^n$ to the projective space) is called *tangentially degenerate* (or, *developable*, or, *strongly parabolic*) if its Gauss mapping $\gamma: M \to G_{l+1}(\mathbb{R}^{n+1})$ has rank < l. Here $G_{l+1}(\mathbb{R}^{n+1})$ denotes the Grassmannian of (l + 1)-dimensional linear subspaces in \mathbb{R}^{n+1} . A submanifold of S^n or \mathbb{RP}^n is called *tangentially degenerate* (or, *developable*, or, *strongly parabolic*) if so is the inclusion.

In the present paper we construct new examples of tangentially degenerate compact submanifolds satisfying the equality for the inequality proved by Ferus [19]. Remark that, if we have a tangentially degenerate immersed submanifold in S^n then, via the canonical double covering $\pi: S^n \to \mathbb{RP}^n$, we have a tangentially degenerate immersed submanifold in \mathbb{RP}^n .

Remark also that the notion of tangential degeneracy is invariant under the projective transformations. Recall that $\mathbb{RP}^n = G_1(\mathbb{R}^{n+1})$ and $S^n = \widetilde{G}_1(\mathbb{R}^{n+1})$ (oriented Grassmannian) have natural projective structures, respectively. In fact, M. A. Akivis clearly stated in [3] and [4] that the study of tangentially degenerate submanifolds belongs to projective geometry. Then our standpoint is as follows: We do not need the metric structures on them for the formulation of the results, while, for the proofs of the results, we use freely the metric structures.

Let M^l be compact and connected, and $f: M \to S^n$ a tangentially degenerate immersion. Denote by r the maximal rank of the Gauss

Received December 8, 2000.

Revised February 5, 2001.

Partially supported by Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science No. 10440013 (the first author), No. 11640057 (the second author), No. 12640087 (the third author).