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§1. Introduction

For a finite group G, its Frobenius number hY°® is the number of
solutions of the equation z™ = 1 in G and a Sylow number s&¥¢ is the
number of cyclic subgroups of G of order n. These numbers are named
after Frobenius theorem and Sylow’s theorem ([Yo 96]). The classical
Frobenius theorem states that hZY° is divisible by the greatest common
divisor of n and |G|. The following transition formula holds:

(1) Y = (r)s?c, (n21),
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where ¢ denotes the Euler function.
Now define the zeta functions of Sylow and Frobenius types by
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Then the transition formula can be presented by the transition identity
between these functions as follows:

() H(2) = ((2)Sg"°(2),

where the transition function {(z) is Riemann’s zeta function. Another
expression of the transition formula (1) is given by the following cyclo-
tomic identity:
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