Advanced Studies in Pure Mathematics 32, 2001 Groups and Combinatorics — in memory of Michio Suzuki pp. 465–474

$|\mathbf{Hom}(A,G)|$ (III)

Tomoyuki Yoshida

$\S1.$ Introduction

For a finite group G, its Frobenius number h_n^{cyc} is the number of solutions of the equation $x^n = 1$ in G and a Sylow number s_n^{cyc} is the number of cyclic subgroups of G of order n. These numbers are named after Frobenius theorem and Sylow's theorem ([Yo 96]). The classical Frobenius theorem states that h_n^{cyc} is divisible by the greatest common divisor of n and |G|. The following transition formula holds:

(1)
$$h_n^{\text{cyc}} = \sum_{r|n} \varphi(r) s_r^{\text{cyc}}, \quad (n \ge 1),$$

where φ denotes the Euler function.

Now define the zeta functions of Sylow and Frobenius types by

$$\begin{split} S_G^{\text{cyc}}(z) &:= \sum_{n=1}^{\infty} \frac{\varphi(n) s_n^{\text{cyc}}}{n^z} = \sum_{g \in G} |g|^{-z}, \\ H_G^{\text{cyc}}(z) &:= \sum_{n=1}^{\infty} \frac{h_n^{\text{cyc}}}{n^z}. \end{split}$$

Then the transition formula can be presented by the *transition identity* between these functions as follows:

(2)
$$H_G^{\text{cyc}}(z) = \zeta(z) S_G^{\text{cyc}}(z),$$

where the transition function $\zeta(z)$ is Riemann's zeta function. Another expression of the transition formula (1) is given by the following cyclotomic identity:

(3)
$$\prod_{n=1}^{\infty} \left(\frac{1}{1-t^n}\right)^{\sharp\{g\in G||g|=n\}/n} = \exp\left(\sum_{n=1}^{\infty} \frac{h_n^{\text{cyc}}}{n} t^n\right).$$

Received April 20, 1999. Revised July 11, 2000.