Advanced Studies in Pure Mathematics 32, 2001 Groups and Combinatorics — in memory of Michio Suzuki pp. 449–451

Either 71:35 or $L_2(71)$ is a maximal subgroup of the Monster

Hiroyoshi Yamaki

§1. Introduction

Let \mathbb{M} be the Monster simple group. Then

By [2] 71:35 is the normalizer of a Sylow 71-subgroup and 59:29 is the normalizer of a Sylow 59-subgroup of M.

The purpose of this note is to prove:

Theorem 1. Either 71 : 35 or $L_2(71)$ is a maximal subgroup of \mathbb{M} .

Theorem 2. Either 59 : 29 or $L_2(59)$ is a maximal subgroup of \mathbb{M} .

Remark. 71:35 is a maximal subgroup of $L_2(71)$ and 59:29 is a maximal subgroup of $L_2(59)$. However we do not know whether $L_2(71)$ or $L_2(59)$ is involved in \mathbb{M} or not (See [6]). Since $|L_2(71)| = 72.71.35$ and $|L_2(59)| = 60.59.29$, these are surprisingly small groups in comparison with \mathbb{M} .

Theorems 1 and 2 are closely related to the prime graphs of finite groups. Let G be a finite group and $\Gamma(G)$ the prime graph of G. $\Gamma(G)$ is the graph such that the vertex set is the set of prime divisors of |G|, and two distinct vertices p and r are joined by an edge if and only if there exists an element of order pr in G. Let $n(\Gamma(G))$ be the number of connected components of $\Gamma(G)$. It has been proved that $n(\Gamma(G)) \leq 6$ in [7], [4], [5].

Supported in part by Grant-in-Aid for Scientific Research (No.12640030), Japan Society for the Promotion of Science.

Received December 17, 1999.

Revised June 17, 2000.