Advanced Studies in Pure Mathematics 32, 2001 Groups and Combinatorics — in memory of Michio Suzuki pp. 413–421

Principal blocks with extra-special defect groups of order 27

Yoko Usami

§1. Introduction

Let G be a finite group and p be a prime number. Let b be a pblock of G, P be a defect group of b and k(b) (respectively, l(b)) be the number of irreducible ordinary characters (respectively, irreducible Brauer characters) in b. Suppose that

(1) two blocks b and b' of finite groups G and G' respectively, have the common defect group P and their Brauer categories $Br_{b,p}(G)$ and $Br_{b',p}(G')$ are equivalent.

(See [FH] for Brauer categories.) When we consider only principal pblocks, their defect groups are Sylow p-subgroups and having the same Brauer category is equivalent to having the same p-local structure. See the definition in section 4 in [R] : Finite groups G and H have the same p-local structure if they have a common Sylow p-subgroup P such that whenever Q_1 and Q_2 are subgroups of P and $f: Q_1 \to Q_2$ is an isomorphism, then there is an element $g \in G$ such that $f(x) = x^g$ for all $x \in Q_1$ if and only if there is an element $h \in H$ such that $f(x) = x^h$ for all $x \in Q_1$.

Under condition (1) there is a question whether we have

(2)
$$k(b) = k(b')$$
 and $l(b) = l(b')$

or not. We have a following conjecture.

Conjecture 1. When b and b' are principal blocks satisfying condition (1), the equalities in (2) hold.

When P is an abelian group, it is known that a block b of G and its Brauer correspondent $Br_P(b)$ in $N_G(P)$ have the same Brauer category

Received May 31, 1999.

Revised June 15, 2000.