Advanced Studies in Pure Mathematics 30, 2001 Class Field Theory – Its Centenary and Prospect pp. 537–547

On Shafarevich–Tate Sets

Takashi Ono

Let K/k be a finite Galois extension of number fields with the Galois group g = Gal(K/k). Let g_P be the decomposition group at a prime P in K. Let G be a g-group. For each P in K, we have the restriction map $r_P : H(g, G) \to H(g_P, G)$ of 1-cohomology sets for which Ker r_P makes sense. The Shafarevich-Tate Set for (K/k, G) is defined by $\coprod(K/k, G) = \bigcap_P \text{Ker } r_P$.

Let X be a smooth curve of genus ≥ 2 over \mathbb{Q} . Then $G = \operatorname{Aut} X$ is finite by Schwarz theorem and there is a finite Galois extension K/\mathbb{Q} so that G is a finite g-group, $g = \operatorname{Gal}(K/\mathbb{Q})$. The set $\operatorname{III}(K/k, G)$ becomes finite. As is well-known, the determination of the finite set amounts to an arithmetical refinement of geometrical classification of curves. In this paper, we shall show, among others, that for a hyperelliptic curve $X : y^2 = x^5 - \ell^2 x, \ \ell =$ an odd prime, we have $\operatorname{III}(K/\mathbb{Q}, G) = 1$ (Hasse principle) if $\ell \equiv 3, 5 \mod 8$, but $\#\operatorname{III}(K/\mathbb{Q}, G) = 2$ if $\ell \equiv 1, 7 \mod 8$.

There is a way to associate an S - T set $III_{\mathbf{H}}(g, G)$ for any group gand a g-group G once we specify a family of subgroups of g (such as the family of decomposition groups g_P when $g = \operatorname{Gal}(K/k)$). E.g., for any finite group G, let g = G, acting on itself as inner automorphisms, and let \mathbf{H} be the family of all cyclic subgroups of G. One checks $III_{\mathbf{H}}(G, G) = 1$ ("Hasse principle") for some easy groups. Here is an interesting question: Does the Monster enjoy the Hasse principle?

§1. $\coprod_{\mathbf{H}}(g,G)$.

Let g be a group and G be a (left) g-group. A cocycle is a map $f: g \to G$ such that

$$f(st) = f(s)f(t)^s, \quad s, t \in g.$$

We denote by Z(g, G) the set of all cocycles. Two cocycles f, f' are equivalent, written $f \sim f'$ if there exists an $a \in G$ such that

$$f'(s) = a^{-1}f(s)a^s, \quad s \in g.$$

Received July 29, 1998.