Advanced Studies in Pure Mathematics 30, 2001 Class Field Theory – Its Centenary and Prospect pp. 463–466

Stably Free and Not Free Rings of Integers

Jean Cougnard

Let N/\mathbb{Q} be a tame Galois extension of number fields with finite degree $[N:\mathbb{Q}]$ and Galois group G. One knows by the normal basis theorem that N is a free rank one $\mathbb{Q}[G]$ -module. It is natural to look at the structure of the ring of integers \mathcal{O}_N as a $\mathbb{Z}[G]$ -module. The first known result is Hilbert's theorem which asserts that If G is abelian and the discriminant of N/\mathbb{Q} is prime to $[N:\mathbb{Q}]$ then \mathcal{O}_N has a normal integral basis ([Hi] satz 132); that is to say, there exists an algebraic integer $a \in N$ such that \mathcal{O}_N has a basis made of the set $\{g(a) \mid g \in G\}$. The following result is E. Noether's theorem which asserts that \mathcal{O}_N is $\mathbb{Z}[G]$ -projective if and only if N/\mathbb{Q} is a tame extension; in fact Noether's result shows that \mathcal{O}_N is locally-free: for all prime p the extended module $\mathbb{Z}_p \otimes_{\mathbb{Z}} \mathcal{O}_N$ is $\mathbb{Z}_p[G]$ -free with rank one. We can associate to \mathcal{O}_N its image $[\mathcal{O}_N]$ in the projective class group $\operatorname{Cl}(\mathbb{Z}[G])$ of $\mathbb{Z}[G]$ -modules; from now on, all the extensions will be tame. In 1968, J. Martinet proved that if G is a dihedral group of order 2p, p an odd prime then \mathcal{O}_N is $\mathbb{Z}[G]$ -free. A few years after, in the case where $G = H_8$ (the quaternionic group of order 8), he was able to describe $\operatorname{Cl}(\mathbb{Z}[G]) \simeq \{\pm 1\}$ and to give a criterion for \mathcal{O}_N free or not. Moreover, he produced rings of integers $\mathbb{Z}[G]$ -free and not free ([Ma2]). Almost in the same time, Armitage gave examples of *L*-functions of quaternionic fields with a zero at $s = \frac{1}{2}$ ([A]).

Knowing the two results J-P. Serre did computations in [S] on examples and was surprised to see that the constant of the functional equation of the Artin *L*-series for the irreducible degree two character of $\operatorname{Gal}(N/\mathbb{Q})$ was 1 whenever \mathcal{O}_N was free and -1 in the other cases. This was proved to be a theorem by A. Fröhlich [F1].

The following years A. Fröhlich proposed a nice conjecture finally established by M.J. Taylor [T]. We give a few notations before we state this theorem.

The first step was a description of the projective classgroup as a quotient of a group of equivariant maps from R_G (the group of characters

Received September 14, 1998