Advanced Studies in Pure Mathematics 30, 2001 Class Field Theory – Its Centenary and Prospect pp. 335–385

Iwasawa Theory – Past and Present

Ralph Greenberg

Dedicated to the memory of Kenkichi Iwasawa

Let F be a finite extension of \mathbb{Q} . Let p be a prime number. Suppose that F_{∞} is a Galois extension of F and that $\Gamma = \text{Gal}(F_{\infty}/F)$ is isomorphic to \mathbb{Z}_p , the additive group of p-adic integers. The nontrivial closed subgroups of Γ are of the form $\Gamma_n = \Gamma^{p^n}$ for $n \ge 0$. They form a descending sequence and Γ/Γ_n is cyclic of order p^n . If we let $F_n = F_{\infty}^{\Gamma_n}$, then we obtain a tower of number fields

$$F = F_0 \subset F_1 \subset \cdots \subset F_n \subset \cdots$$

such that F_n/F is a cyclic extension of degree p^n and $F_{\infty} = \bigcup_n F_n$. In 1956, at the summer meeting of the American Mathematical Society in Seattle, Iwasawa gave an invited address entitled A theorem on Abelian groups and its application to algebraic number theory. The application which he discussed is the following now famous theorem.

Theorem. Let p^{e_n} be the highest power of p dividing the class number of F_n . Then there exist integers λ, μ , and ν such that $e_n = \lambda n + \mu p^n + \nu$ for all sufficiently large n.

Iwasawa's proof of this theorem is based on studying the Galois group $X = \text{Gal}(L_{\infty}/F_{\infty})$, where $L_{\infty} = \bigcup_{n} L_{n}$ and L_{n} is the *p*-Hilbert class field of F_{n} . (That is, L_{n} is the maximal abelian *p*-extension of F_{n} which is unramified at all primes of F_{n} . By class field theory, L_{n} is a finite extension of F_{n} and $[L_{n}:F_{n}] = p^{e_{n}}$.) The extension L_{∞}/F is Galoisian, and one has an exact sequence

$$0 \to X \to \operatorname{Gal}\left(L_{\infty}/F\right) \to \Gamma \to 0.$$

Since X is a projective limit of finite abelian p-groups, we can regard X as a compact \mathbb{Z}_p -module. (\mathbb{Z}_p denotes the ring of p-adic integers.) But

Received November 16, 1998.

Revised May 13, 1999.