Advanced Studies in Pure Mathematics 28, 2000 Combinatorial Methods in Representation Theory pp. 401–422

A Duality of a Twisted Group Algebra of the Hyperoctahedral Group and the Queer Lie Superalgebra

Manabu Yamaguchi

§1. Introduction

We establish a duality relation (Theorem 4.2) between one of the twisted group algebras of the hyperoctahedral group H_k (or the Weyl group of type B_k) and a Lie superalgebra $\mathfrak{q}(n_0) \oplus \mathfrak{q}(n_1)$ for any integers $k \geq 4$ and $n_0, n_1 \geq 1$. Here $\mathfrak{q}(n_0)$ and $\mathfrak{q}(n_1)$ denote the "queer" Lie superalgebras as called by some authors. The twisted group algebra \mathcal{B}'_k in focus in this paper belongs to a different cocycle from the one \mathcal{B}_k used by A. N. Sergeev in his work [8] on a duality with $\mathfrak{q}(n)$ and by the present author in a previous work [11]. This \mathcal{B}'_k contains the twisted group algebra \mathcal{A}_k of the symmetric group \mathfrak{S}_k in a straightforward manner (cf. §1. 1. 1), and has a structure similar to the semidirect product of \mathcal{A}_k and $\mathbb{C}[(\mathbb{Z}/2\mathbb{Z})^k]$. (\mathcal{B}'_k and \mathcal{B}_k were denoted by $\mathbb{C}^{[-1,+1,+1]}W_k$ and $\mathbb{C}^{[+1,+1,-1]}W_k$ respectively by J. R. Stembridge in [10].)

In §2, we construct the \mathbb{Z}_2 -graded simple \mathcal{B}'_k -modules (where $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$) using an analogue of the little group method. These simple \mathcal{B}'_k -modules are slightly different from the non-graded simple \mathcal{B}'_k -modules constructed by Stembridge in [10] because of the difference between \mathbb{Z}_2 -graded and non-graded theories, but they can easily be translated into each other. We will use the algebra $\mathcal{C}_k \otimes \mathcal{B}'_k$, where \mathcal{C}_k is the 2^k -dimensional Clifford algebra (cf. (3.2)) and \otimes denotes the \mathbb{Z}_2 -graded tensor product (cf. [1], [2], [11, §1]), as an intermediary for establishing our duality, as we explain below. The construction of the simple \mathcal{B}'_k -modules leads to a construction of the simple $\mathcal{C}_k \otimes \mathcal{B}'_k$ -modules in §3.

In §4, we define a representation of $C_k \otimes \mathcal{B}'_k$ in the k-fold tensor product $W = V^{\otimes k}$ of $V = \mathbb{C}^{n_0+n_1} \oplus \mathbb{C}^{n_0+n_1}$, the space of the natural representation of the Lie superalgebra $q(n_0 + n_1)$. This representation

Received March 1, 1999