Advanced Studies in Pure Mathematics 28, 2000 Combinatorial Methods in Representation Theory pp. 261–285

Capelli Elements in the Classical Universal Enveloping Algebras

Maxim Nazarov

For any complex classical group $G = O_N, Sp_N$ consider the ring $Z(\mathfrak{g})$ of G-invariants in the corresponding enveloping algebra $U(\mathfrak{g})$. Let u be a complex parameter. For each $n = 0, 1, 2, \ldots$ and every partition ν of n into at most N parts we define a certain rational function $Z_{\nu}(u)$ which takes values in $Z(\mathfrak{g})$. Our definition is motivated by the works of Cherednik and Sklyanin on the reflection equation, and also by the classical Capelli identity. The degrees in $U(\mathfrak{g})$ of the values of $Z_{\nu}(u)$ do not exceed n. We describe the images of these values in the n-th symmetric power of \mathfrak{g} . Our description involves the plethysm coefficients as studied by Littlewood, see Theorem 3.4 and Corollary 3.6.

§1. Capelli elements in the algebra $U(\mathfrak{gl}_N)$

We work with the general linear Lie algebra \mathfrak{gl}_N over the complex field \mathbb{C} . In this section we recall the definition from [OO1, S] of the Capelli elements in the universal enveloping algebra $U(\mathfrak{gl}_N)$. Here we also recall an explicit construction from [N2,O] of these elements.

Let the indices i, j run through the set $\{1, \ldots, N\}$. Let the vectors e_i form the standard basis in \mathbb{C}^N . We fix in the Lie algebra \mathfrak{gl}_N the basis of the standard matrix units E_{ij} . We will also regard E_{ij} as generators of the universal enveloping algebra $\mathfrak{U}(\mathfrak{gl}_N)$. Now choose the Borel subalgebra in \mathfrak{gl}_N spanned by the elements E_{ij} with $i \leq j$. Then choose the basis E_{11}, \ldots, E_{NN} in the corresponding Cartan subalgebra.

Let ν be any partition of n into at most N parts. We will write $\nu = (\nu_1, \ldots, \nu_N)$. Let U_{ν} be the irreducible \mathfrak{gl}_N -module of highest weight ν . The module U_{ν} appears in the decomposition of the n-th tensor power of the defining \mathfrak{gl}_N -module \mathbb{C}^N . It is called the *polynomial* \mathfrak{gl}_N -module corresponding to the partition ν .

There is a distinguished basis in the centre $Z(\mathfrak{gl}_N)$ of the universal enveloping algebra $U(\mathfrak{gl}_N)$, parametrized by the same partitions ν . The

Received November 23, 1998.