Advanced Studies in Pure Mathematics 26, 2000

Analysis on Homogeneous Spaces and Representation Theory of Lie Groups pp. $129{-}144$

On $\wedge \mathfrak{g}$ for a Semisimple Lie Algebra \mathfrak{g} , as an Equivariant Module over the Symmetric Algebra $S(\mathfrak{g})$

Bertram Kostant

§1. Introduction

1.1. Let \mathfrak{g} be a complex semisimple Lie algebra and let \mathcal{C} be the set of all commutative Lie subalgebras \mathfrak{a} of \mathfrak{g} . If $\mathfrak{a} \in \mathcal{C}$ and $k = \dim \mathfrak{a}$ let $[\mathfrak{a}] = \wedge^k \mathfrak{a}$. Regard $[\mathfrak{a}]$ as a 1-dimensional subspace of $\wedge^k \mathfrak{g}$ and let $C \subset \wedge \mathfrak{g}$ be the span of all $[\mathfrak{a}]$ for all $\mathfrak{a} \in \mathcal{C}$. The exterior algebra $\wedge \mathfrak{g}$ is a \mathfrak{g} -module with respect to the extension, θ , of the adjoint representation, defined so that $\theta(x)$ is a derivation for any $x \in \mathfrak{g}$. It is obvious that $C = \sum_{k=1}^n C^k$ is a graded \mathfrak{g} -submodule of $\wedge \mathfrak{g}$. Of course $C^k = 0$ for $k > n_{abel}$ where n_{abel} is the maximal dimension of an abelian Lie subalgebra of \mathfrak{g} . The paper [4] initiated a study of the \mathfrak{g} -module C. It was motivated by a result of Malcev giving the value of n_{abel} for all complex simple Lie subalgebras. For example, for the exceptional Lie algebras G_2, F_4, E_6, E_7 and E_8 , the value of n_{abel} , respectively, is 3, 9, 16, 27 and 36. See [10].

One of the results in [4] is that C (denoted by A in [4]) is a multiplicity free \mathfrak{g} -module. Let \mathfrak{b} be a Borel subalgebra of \mathfrak{g} . If Ξ is an index set for the set of all abelian ideals $\{\mathfrak{a}_{\xi}\}, \xi \in \Xi$, of \mathfrak{b} , then the irreducible components of C may also be indexed by Ξ . The irreducible components, written as $C_{\xi}, \xi \in \Xi$, are characterized by the property that $[\mathfrak{a}_{\xi}]$ is the highest weight space of C_{ξ} . One therefore has the unique decomposition

$$C = \sum_{\xi \in \Xi} C_{\xi}$$

into irreducible components. Sometime after [4] was published, Dale Peterson established the striking result that the cardinality of Ξ was 2^{l} . His ingenious proof, using the affine Weyl group, sets up a natural bijection between Ξ and the set of elements of order 2 (and the identity) in a maximal torus of a simply-connected Lie group G with Lie

Research supported in part by NSF grant DMS-9625941 Received March 2, 1998.