Advanced Studies in Pure Mathematics 23, 1994 Spectral and Scattering Theory and Applications pp. 283–294

Trudinger's Inequality and Related Nonlinear Elliptic Equations in Two-Dimension

Takayoshi Ogawa and Takashi Suzuki

§1. Introduction and results

We are concerned with the following nonlinear elliptic equations:

(1)
$$\begin{cases} -\Delta u = \lambda u e^{u^2}, & x \in B, \\ u = 0, & x \in \partial\Omega, \end{cases}$$

where $B = B_1(0) \subset \mathbb{R}^2$ is a unit disk in \mathbb{R}^2 and λ is a positive parameter. We consider a family of solutions of (1) satisfying

(2)
$$||u||_{L^{\infty}} \to \infty \text{ as } \lambda \to 0.$$

The nonlinearity of the equation (1) is the Sobolev critical exponent in two-dimension. For any domain $\Omega \in \mathbb{R}^2$, It is well known that the Sobolev space $H^1_0(\Omega)$ is continuously imbedded in $L^p(\Omega)$ for any $p < \infty$ but is false in the case $p = \infty$. Trudinger [18] showed that for any $u \in H^1_0(\Omega)$ with $\|\nabla u\|_2 = 1$, there are two constants $\alpha > 0$ and C > 0 such that

(3)
$$\int_{\Omega} \exp\{\alpha u^2\} dx \le C|\Omega|.$$

Later, Moser [7] simplified the proof and improved that (3) is also valid for $\alpha \leq 4\pi$. Here 4π is the constant of the isoperimetric inequality. The inequality (3) is also valid for any unbounded domain (Ogawa [9]). That is when Ω is any domain in \mathbb{R}^2 , we have for all $u \in H_0^1(\Omega)$,

(4)
$$\int_{\Omega} \{ \exp(u^2) - 1 \} dx \le C \|u\|_2^2, \quad \|\nabla u\|_2 = 1.$$

(See also Ogawa-Ozawa [10] and Ozawa [12] for further extensions).

Received December 28, 1992.