Advanced Studies in Pure Mathematics 23, 1994 Spectral and Scattering Theory and Applications pp. 143–152

H^1 -Blow up Solutions for Peker-Choquard Type Schrödinger Equations

Hitoshi Hirata

§1. Introduction and the main results

In this paper, we study the H^1 -solution for the following nonlinear Schrödinger equation

(1-1)
$$\begin{cases} i\partial_t u = -\Delta_x u - (r^{-\gamma} * |u|^2)u \\ u(0,x) = u_0(x) \in H^1(\mathbf{R}^N) \end{cases},$$

where r=|x| and $2 \le \gamma < 4$, $\gamma \le N-1$, and show a sufficient condition of ' H^1 -blowing up'. Here we say that u is an H^1 -local solution of (1-1) when for some T>0, $u \in C([0,T);H^1)$ and satisfies next integral equation

(1-2)
$$u(t) = U(t)u_0 - i \int_0^t U(t-s)\{(r^{-\gamma} * |u^2|)u\}(s)ds,$$

where $U(t) = \exp(it\Delta_x)$ is the evolution operator for the free Schrödinger equation. Above type nonlinear Schrödinger equation is appeared in some approximations of many body problems, so-called Hartree approximation. As for detailed arguments of this approximation, see e.g. [5], [6] and [7].

Before stating the main results, we define several notations. For $p \in [1, \infty]$ and $k \in \overline{\mathbb{N}}$, we define Sobolev space

$$W^{k,p} \equiv \{f \in \mathcal{S}': \|f\|_{W^{k,p}} \equiv \sum_{|\alpha| \leq k} \|\partial_x^{\alpha} f\|_p < \infty\},$$

where $\|\cdot\|_p$ is usual L^p -norm. $H^k \equiv W^{k,2}$ and $H^{-k} \equiv (H^k)^*$. For an interval I and a Banach space X, $C^k(I;X)$ is the space of X-valued C^k -functions on I, k=0,1,2... and $L^p(I;X)$ is the space of L^p -functions. We say $u \in L^p_{loc}(I;X)$ if $u \in L^p(J;X)$ for any compact $J \subset I$.

Received January 5, 1993.