Advanced Studies in Pure Mathematics 23, 1994 Spectral and Scattering Theory and Applications pp. 69–82

Commutator Algebra and Resolvent Estimates

Christian Gérard Hiroshi Isozaki Erik Skibsted

§1. Introduction

In studying the detailed properties of Schrödinger operators, the method of micro-localization seems to be indispensable. For the manybody problem, this point of view was introduced by Enss [3], Mourre [11] and then by Sigal-Soffer [13] to investigate the propagation properties of the unitary group. These sorts of estimates not only lead us to a deep understanding of the space-time behavior of the solution to the Schrödinger equation, but also give us many applications. The aim of this paper is to prove a certain variation of these kinds of estimates for the resolvent of the N-body Schrödinger operator.

We consider a system of N-particles moving in \mathbf{R}^{ν} with mass m_i and position $x^i \in \mathbf{R}^{\nu} (1 \leq i \leq N)$. Let \mathcal{X} be defined by

$$\mathcal{X}=\{(x^1,\cdots,x^N);\sum_{i=1}^Nm_ix^i=0\},$$

and consider the Schrödinger operator

$$H = H_0 + \sum_{i < j} V_{ij},$$

where $-H_0$ is the Laplace-Beltrami operator on \mathcal{X} equipped with the Riemannian metric induced from $ds^2 = 2 \sum_{i=1}^{N} m_i (dx^i)^2$ on $\mathbf{R}^{N\nu}$. Each pair potential $V_{ij} = V_{ij}(x^i - x^j)$ is assumed to be a real-valued C^{∞} -function on \mathbf{R}^{ν} and satisfies for some constant $\rho > 0$

(1.1) $|\partial_y^m V_{ij}(y)| \le C_m < y >^{-m-\rho},$

Received January 18, 1993.