Diameter and Area Estimates for S^{2} and P^{2} with Nonnegatively Curved Metrics

Takashi Shioya

§0. Introduction

We consider the quantity

$$
F(M):=\frac{\operatorname{Vol}(M)}{\operatorname{Diam}(M)^{n}}
$$

for any closed Riemannian n-manifold M, which is a homothety invariant, where Vol and Diam denote the volume and the diameter respectively. If the Ricci curvature of M is nonnegative everywhere, Bishop's volume comparison theorem implies that $F(M)<\pi$. A.D. Alexandrov conjectured in [A, p.417] (see also [BZ, p.42]) that for any nonnegatively curved metric g on the 2-sphere S^{2},

$$
F\left(S^{2}, g\right) \leq \frac{\pi}{2}
$$

and the equality holds only if g is homothetic to the metric of the double of the Euclidean unit disk $\bar{B}(1):=\left\{x \in \mathbf{R}^{2} \mid d(x, o) \leq 1\right\}$, which is a singular metric of nonnegative Toponogov curvature. Note that Alexandrov deals a class of surfaces containing such a singular space, namely surfaces of bounded curvature in the sense of [AZ]. The volume and the diameter of any such singular surface can be approximated by those of Riemannian 2-manifolds, and thus it suffices to consider only regular metrics.

Alexandrov's conjecture has not been proved as of now. Concerning this, there are two known results as follows.

Theorem (Sakai, [S]). For any nonnegatively curved Riemannian metric g on the 2 -sphere S^{2},

$$
F\left(S^{2}, g\right)<0.985 \pi
$$

Received January 28, 1991.
Revised April 28, 1991.

