Advanced Studies in Pure Mathematics 22, 1993 Progress in Differential Geometry pp. 265–297

A Geometric Construction of Laguerre-Forsyth's Canonical Forms of Linear Ordinary Differential Equations

Yutaka Se-ashi

§0. Introduction

The purpose of this paper is to reformulate the fundamental results of E.J. Wilczynski's book [5] by applying E. Cartan's method of moving frames.

Let E be a vector bundle over a 1-dimensional manifold M. By taking a local coordinate system t in M and a moving frame $\{e_1, \dots, e_r\}$ of E, we express each cross section s of E in the form:

$$(0.1) s = \sum_{\alpha=1}^{r} y_{\alpha} e_{\alpha},$$

where y_1, \dots, y_r are functions on M. Let \mathcal{D} be a system of homogeneous linear ordinary differential equations on E of order n given in the form:

$$(0.2) \qquad \left(\frac{d}{dt}\right)^n y_{\alpha} + \sum_{k=1}^n \sum_{\beta=1}^r a_{\alpha\beta}^{(k)}(t) \left(\frac{d}{dt}\right)^{n-k} y_{\beta} = 0, \quad \alpha = 1, \dots, r.$$

Corresponding to (0.2), we define $r \times r$ matrices $A^{(1)}(t), \dots, A^{(n)}(t)$ by

(0.3)
$$A^{(k)}(t) = (a_{\alpha\beta}^{(k)}(t)), \quad k = 1, \dots, n.$$

For another local coordinate system in M and another moving frame, we also express \mathcal{D} in a similar way as (0.2) and give $r \times r$ matrices as (0.3).

In modern terminology, Wilczynski showed the following facts:

(A) There exists a pair $(t, \{e_{\alpha}\})$ satisfying the following condition

(L.F)
$$A^{(1)}(t) = 0$$
 and Tr $A^{(2)}(t) = 0$.

Received March 25, 1991.

Revised April 12, 1991.