Advanced Studies in Pure Mathematics 22, 1993 Progress in Differential Geometry pp. 243–245

On a Theorem of Edmonds

Kaoru Ono

§1. Introduction

For an action of a cyclic group of odd order $m \ge 3$ on a manifold, the normal bundle of the fixed point set is orientable. It is false for actions of the cyclic group of order 2. Edmonds showed the following

Theorem (Edmonds [E]). If \mathbb{Z}_2 acts smoothly on an *n* dimensional spin manifold M, preserving its orientation and spin structure, then the fixed point set $F = M^{\mathbb{Z}_2}$ is orientable.

Bott and Taubes gave another proof in [B-T]. The purpose of this short note is to give an elementary proof of this theorem and consider the spin^c case.

The author is grateful to Professor A. Hattori for showing him private note [H].

§2. Review on Clifford algebras and spin structures

Let V be a vector space with an positive definite inner product. The Clifford algebra $\operatorname{Cl}(V)$ associated to V is defined as the quotient algebra of the tensor algebra over V by the ideal generated by $v \otimes v + |v|^2$ where $v \in V$. $\operatorname{Cl}(V)$ is not an algebra with \mathbb{Z} -grading, but there is a filtration as follows:

$$\operatorname{Cl}(V)^k = linear \ span \ of \ \{v_1 \cdots v_j \in \operatorname{Cl}(V); v_i \in V, j \leq k\}.$$

It is easy to see that the associated graded module of filtered module $\operatorname{Cl}(V)$ is the exterior algebra $\Lambda(V)$. $\operatorname{Cl}(V)$ contains the spin group $\operatorname{Spin}(V)$ which is the double covering group of SO(V). More precisely $\operatorname{Spin}(V) = \operatorname{Pin}(V) \cap \operatorname{Cl}(V)_0$, where $\operatorname{Pin}(V)$ is the multiplicative group generated by unit vectors in V, and $\operatorname{Cl}(V)_0$ is the even part of $\operatorname{Cl}(V)$

Partially supported by the Grant-in-Aid for Encouragement of Young Scientists, The Ministry of Education, Science and Culture, Japan

Received March 7, 1991.