Advanced Studies in Pure Mathematics 21, 1992 Zeta Functions in Geometry pp. 173–179

Billiards without Boundary and Their Zeta Functions

Takehiko Morita

In this article we consider a simple dynamical system in \mathbb{R}^2 with elastic reflection. As it is shown in [2], the zeta function

(1)
$$\zeta(s) = \prod_{\gamma} (1 - \exp[-sT_{\gamma}])^{-1}$$

of such a dynamical system satisfies nice properties which enable us to apply the results in [3] and [4], where \prod_{γ} is taken over all prime periodic orbits of the dynamical system and T_{γ} denotes their period. Our present purpose is to summarize auxiliary results which do not appear in [2].

First we recall definitions and notations in [2]. Let $O_1, O_2, ..., O_L$ $(L \ge 3)$ a finite number of bounded domains in \mathbb{R}^2 , which will be called scatterers, with smooth boundary. We impose the following hypotheses on scatterers:

- (H.1) (dispersing) For each j, O_j is strictly convex, i.e., the boundary ∂O_j is a simple closed curve with nonvanishing curvature.
- (H.2) (no eclipse) For any triple of distinct indices (j, k, l), the convex hull of $\overline{O_j}$ and $\overline{O_k}$ does not intersect $\overline{O_l}$.

Under these hypotheses it is clear that the boundary ∂O of $O = \bigcup_{j=1}^{L} O_j$ equals $\bigcup_{j=1}^{L} \partial O_j$.

Let $SR^2 = R^2 \times S^1 = \{(q, v); |v| = 1\}$ be the unit tangent bundle of R^2 , and let $\pi : SR^2 \to R^2$ be the natural projection. Choose a point $q_j \in \partial O_j$ and fix it for each j. We define the following quantities for $x = (q, v) \in \partial O$.

(2)
$$\begin{aligned} \xi_0(x) &= \xi_0(q) = j \quad \text{if } \pi(x) \in \partial O_j, \text{ and} \\ r(x) &= r(q), \ \phi(x) = \phi(q, v), \ k(x) = k(q), \end{aligned}$$

Received October 4, 1991.