Advanced Studies in Pure Mathematics 20, 1992 Aspects of Low Dimensional Manifolds pp. 147–166

Invariants of Spatial Graphs

Jun Murakami

§1. Introduction

The purpose of this paper is to construct invariants of spatial graphs from regular isotopy invariants of non-oriented link diagrams of *knit trace type*. Kauffman's bracket polynomial [4], which is a version of the Jones polynomial, is of knit trace type. The Dubrovnik polynomial [5], which is used in the definition of the Kauffman polynomial, is also of knit trace type [6]. Hence these two invariants are generalized to invariants of spatial graphs by our method. The Yamada polynomial introduced in [10] is the non-trivial simplest one of our invariants. A similar invariants are introduced in [9] for ribbon graphs. They use quasi-triangular Hopf algebras. But we use representations of knit semigroups or braid groups instead of Hopf algebras.

To introduce regular isotopy invariants of link diagrams of *knit trace* type, we need notion of a Markov knit sequence. Let \mathbb{C} be the field of complex numbers. Knit semigroups K_n , $(n = 1, 2, \cdots)$ are introduced in [6] defined by the following generators and relations.

$$\begin{split} K_n &= \langle \tau_1, \cdots, \tau_{n-1}, \ \tau_1^{-1}, \cdots, \tau_{n-1}^{-1}, \ \varepsilon_1, \cdots, \varepsilon_{n-1} \quad | \\ &\tau_i \tau_i^{-1} = \tau_i^{-1} \tau_i = 1, \quad \tau_i \tau_j = \tau_j \tau_i \ (|i-j| \ge 2), \\ &\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}, \quad \tau_i \varepsilon_j = \varepsilon_j \tau_i \ (|i-j| \ge 2), \\ &\varepsilon_i \varepsilon_{i\pm 1} \varepsilon_i = = \varepsilon_i, \quad \varepsilon_i \varepsilon_j = \varepsilon_j \varepsilon_i \ (|i-j| \ge 2), \\ &\varepsilon_i \tau_{i\pm 1} = \varepsilon_i \varepsilon_{i\pm 1} \tau_i^{-1}, \quad \varepsilon_i \tau_{i\pm 1}^{-1} = \varepsilon_i \varepsilon_{i\pm 1} \tau_i, \\ &\tau_{i\pm 1} \varepsilon_i = \tau_i^{-1} \varepsilon_{i\pm 1} \varepsilon_i, \quad \tau_{i\pm 1}^{-1} \varepsilon_i = \tau_i \varepsilon_{i\pm 1} \varepsilon_i \rangle \end{split}$$

The generators of K_n are presented graphically as in Figure 1. In the graphical presentation, the product of two elements of K_n corresponds to the composite of two diagrams as in the case of braid groups. Let

Received July 6, 1991.