Advanced Studies in Pure Mathematics 19, 1989 Integrable Systems in Quantum Field Theory and Statistical Mechanics pp. 399-415

Solvable Lattice Models and Algebras of Face Operators

Jun Murakami

§1. Introduction

In this paper, we discuss algebras associated with the solvable lattice models and conformal field theory (CFT). In [7], solutions of Yang-Baxter equations (YBE) associated with the vector representations of simple Lie algebras are introduced. For each solution, we denote by Y_n an algebra of Yang-Baxter operators. On the other hand, solutions of star-triangle relations (or IRF models) associated with the vector representations of classical simple Lie algebras are introduced in [9]. For each solution, an algebra of face operators F_n are introduced in Section 3. Let Y_n and F_n be the above algebras associated with a simple Lie algebra of type A. Then they are both quotients of Iwahori's Hecke algebra $H_n(q)$ of type A. Let \mathfrak{g} be a simple Lie algebra of type B, C or D. For the algebras Y_n and F_n associated with \mathfrak{g} , we show in Section 5 that Y_n and F_n are both quotients of a q-analogue of Brauer's centralizer algebra $C_n(a,q)$. The algebras $H_n(q)$ and $C_n(a,q)$ have the following properties.

- (1) The algebra of face operators of an IRF model associated with a classical simple Lie algebra is a quotient of $H_n(q)$ or $C_n(a,q)$.
- (2) The algebra of Yang-Baxter operators associated with a classical simple Lie algebra is a quotient of $H_n(q)$ or $C_n(a,q)$. ([7], [13])
- (3) Let $U_q(\mathfrak{g})$ denote the q-analogue of the universal enveloping algebra of a simple Lie algebra \mathfrak{g} . Then the centralizer algebra associated with the vector representation of $U_q(\mathfrak{g})$ is equal to a quotient of $H_n(q)$ if \mathfrak{g} is of type A and a quotient of $C_n(a,q)$ if \mathfrak{g} is of type B or C. The centralizer algebra associated with that of type D contains a quotient of $C_n(a,q)$. (Immediate consequence of (2).)

Received February 3, 1989.