Advanced Studies in Pure Mathematics 19, 1989 Integrable Systems in Quantum Field Theory and Statistical Mechanics pp. 149-191

Paths, Maya Diagrams and representations of $\widehat{\mathfrak{sl}}(r, \mathbf{C})$

Etsuro Date, Michio Jimbo, Atsuo Kuniba, Tetsuji Miwa and Masato Okado

Dedicated to Professor Tosihusa Kimura on his 60th birthday

§1. Introduction

Let \mathfrak{g} be the affine Lie algebra $\mathfrak{sl}(r, \mathbf{C})$, let Λ be a dominant integral weight, and let $L(\Lambda)$ be the irreducible \mathfrak{g} -module with highest weight Λ . In this article we construct an explicit basis of each weight space $L(\Lambda)_{\mu}$. As a corollary we prove a new combinatorial formula for the dimensionality of $L(\Lambda)_{\mu}$, which was conjectured in [1] through the study of corner transfer matrices of solvable lattice models (see Theorem 1.2 below).

The problem of constructing explicit bases goes back to the work of Gelfand and Tsetlin [2] who gave a canonical basis of $L(\Lambda)$ for the classical Lie algebras $\mathfrak{g} = \mathfrak{gl}(r, \mathbf{C})$, $\mathfrak{o}(r, \mathbf{C})$. Analogous results are available in the setting of affine Lie algebras. When Λ is of level 1, $L(\Lambda)$ can be identified with a space of polynomials in infinitely many variables [3,4] or a simple modification thereof [5]. For higher levels, the Z-algebra approach initiated by Lepowsky and Wilson [6] provides a basis in various cases ($\mathfrak{g} = \widehat{\mathfrak{sl}}(2, \mathbf{C})$, arbitrary levels [3],[7], or $\mathfrak{g} = \widehat{\mathfrak{gl}}(r, \mathbf{C}), \widehat{\mathfrak{sp}}(r, \mathbf{C})$, level 2 [8]). Lakshmibai and Seshadri [9] gave a 'standard monomial basis' for $\widehat{\mathfrak{sl}}(2, \mathbf{C})$ using geometric ideas.

A new feature of our approach is the use of an object—path, which we now explain. Let $\epsilon_{\mu} = (0, \dots, \stackrel{\mu-\text{th}}{1}, \dots, 0) (0 \leq \mu < r)$ denote the standard base vectors of \mathbb{Z}^r . We extend the suffixes to \mathbb{Z} by $\epsilon_{\mu+r} = \epsilon_{\mu}$. Fix a positive integer l.

Definition 1.1. A path is a sequence $\eta = (\eta(k))_{k \ge 0}$ consisting of elements $\eta(k) \in \mathbb{Z}^r$ of the form $\epsilon_{\mu_1(k)} + \cdots + \epsilon_{\mu_l(k)} (\mu_1(k), \cdots, \mu_l(k) \in \mathbb{Z})$.

Received November 15, 1988.