Advanced Studies in Pure Mathematics 19, 1989
Integrable Systems in Quantum Field Theory and Statistical Mechanics pp. 95-116

Solving Models in Statistical Mechanics

R. J. Baxter

One of the main aims of statistical mechanics is to calculate the partition function Z. Here I shall discuss how this can be done for a certain class of two-dimensional lattice models (and one three-dimensional model). They are by definition "solvable". Most of them can also be related to one-dimensional integrable Hamiltonians, so in this sense they are also said to be "integrable".

Such models are made by placing spins σ_{i} on the N sites (or edges) of a planar lattice \mathcal{L} (e.g. the square lattice). They have values +1 or -1 ; or $1, \ldots, q$; or indeed any set of values that is appropriate. Adjacent spins (i.e. those sharing an edge, or a face, or a vertex) interact. The partition function is

$$
\begin{equation*}
Z=\sum_{\sigma} \prod W\left(\sigma_{i}, \sigma_{j}, \ldots\right) \tag{1}
\end{equation*}
$$

where the inner product is over all edges, faces or vertices of $\mathcal{L} ; \sigma_{i}, \sigma_{j}, \ldots$ are the spins on each such edge, face or vertex; the sum is over all values of all the spins. If each spin takes q values, there are q^{N} terms in the summation. We want N to be large: at least 100 , and of course q at least 2 . Hence there are vastly many terms in the sum.

There are now a number of such solvable models. I list the ones I shall consider here in Table 1. There are of course many others, for instance the Izergin-Korepin [1], nested Bethe ansatz ([2] and refs. therein), and various colouring problems [3-6].

There are many relations between these models: for instance the Ising model [7] is a special case of both the 8 -vertex [8] and chiral Potts [$9-12$] models. The 8 -vertex model is equivalent to the 8 -vertex solid-on-solid (SOS) model [13], in the sense that they both have the same partition function, even though they are formulated differently and have different order parameters. The hard hexagon model [14] is a special case of the 8 -vertex SOS model, and further generalizations of these models

