Advanced Studies in Pure Mathematics 18-I, 1990 Recent Topics in Differential and Analytic Geometry pp. 397-416

Compactification of Moduli Spaces of Einstein-Hermitian Connections for Null-Correlation Bundles

Takashi Nitta

§0. Introduction

In 1970's by an effective use of twistor theory originated from Penrose [P], gauge-theoretic studies of anti-self-dual connections over 4manifolds were inaugurated by Atiyah, Hitchin and Singer (see for instance [A-H-S], [A-J], [A-W]). Almost at the same time, Hartshorne determined the moduli spaces of anti-self-dual connections for SU(2)bundles over S^4 through a purely algebraic study of the null-correlation bundles over $\mathbb{P}^3(\mathbb{C})$. A little later, Kobayashi [K] introduced the concept of Einstein-Hermitian vector bundles over Kähler manifolds, which is in some sense a higher dimensional analogue of anti-self-dual connections over 4-manifolds (see for instance Kobayashi [K] for a general theory of Einstein-Hermitian connections).

The purpose of this paper is to construct a compactified family of Einstein-Hermitian connections on null-correlation bundles over odddimensional complex projective spaces $\mathbb{P}^{2m+1}(\mathbb{C})$. Let $\mathbb{P}^m(\mathbb{H}) = \operatorname{Sp}(m + 1)/\operatorname{Sp}(m) \times \operatorname{Sp}(1)$ be the *m*-dimensional quaternionic projective space, and $p : \mathbb{P}^{2m+1}(\mathbb{C}) \to \mathbb{P}^m(\mathbb{H})$ the corresponding twistor space. The homogeneous space $\operatorname{Sp}(m+1)/\operatorname{id} \times \operatorname{Sp}(1)$ is a principal fibre bundle over $\mathbb{P}^m(\mathbb{H})$ with typical fibre $\operatorname{Sp}(m)$. Let τ be the standard representation of $\operatorname{Sp}(m)$ in \mathbb{C}^{2m} . Then $V := (\operatorname{Sp}(m+1)/\operatorname{id} \times \operatorname{Sp}(1)) \times_{\tau} \mathbb{C}^{2m}$ is a complex vector bundle over $\mathbb{P}^m(\mathbb{H})$. Since $\operatorname{Sp}(m)$ is contained on $\operatorname{U}(2m)$, the vector bundle V carries a natural Hermitian metric h_V . Salamon introduced in [S] a certain type of connections (which we call B_2 -connections) on vector bundles over quaternionic Kähler manifolds, and such connections are later studied by Berard-Bergery and Ochiai [B-O] in a more general setting. We showed that B_2 -connections are Yang-Mills connections and studied them in [N1], which is also obtained by Capria and

Received April 21, 1989.