Advanced Studies in Pure Mathematics 18-I, 1990 Recent Topics in Differential and Analytic Geometry pp. 251-270

Eta Invariants and Automorphisms of Compact Complex Manifolds

Akito Futaki and Kenji Tsuboi

Dedicated to Professor Akio Hattori on his sixtieth birthday

§1. Introduction

Let M be an m-dimensional compact complex manifold, G the group of all automorphisms of M and \mathfrak{g} the complex Lie algebra of all holomorphic vector fields on M. In [F1, FMo] we defined a complex Lie algebra character $\mathcal{F} : \mathfrak{g} \to \mathbb{C}$ with properties that \mathcal{F} depends only on the complex structure of M, and that the vanishing of \mathcal{F} is a necessary condition for M to admit an Einstein-Kähler metric. \mathcal{F} can be lifted to a group character $\widehat{\mathcal{F}} : G \to \mathbb{C}/\mathbb{Z}$. For these we refer the reader to a survey [FMaS], Chapters 1 and 3 in this volume; but brief reviews of \mathcal{F} and $\widehat{\mathcal{F}}$ will be given respectively in this section and at the beginning of Section 3.

In this paper we apply the theory of eta invariants of [APS] and [D] to obtain an interpretation of $\widehat{\mathcal{F}}$ in terms of eta invariants (Theorem 3.7) and a localization formula for $\widehat{\mathcal{F}}(a)$ in terms of the fixed point set of an automorphism $a \in G$ (Theorem 3.10). We also compute a few examples.

An unsolved question, which motivated this study, is whether M admits an Einstein-Kähler metric if $c_1(M) > 0$ and $\mathfrak{g} = \{0\}$. Note that if $\mathfrak{g} = \{0\}$ then $\mathcal{F} = 0$ trivially. Our study began with an attempt to know whether $\widehat{\mathcal{F}}$ can play any role even if $\mathfrak{g} = \{0\}$. If $c_1(M) > 0$ and $\mathfrak{g} = \{0\}$ then G is a finite group and the imaginary part $\operatorname{Im} \widehat{\mathcal{F}} : G \to \mathbb{R}$ vanishes identically, but the real part $\operatorname{Re} \widehat{\mathcal{F}} : G \to \mathbb{R} / \mathbb{Z}$ may not do. Our aim is therefore to find an example of a compact complex manifold with $\mathfrak{g} = \{0\}$ and with $\widehat{\mathcal{F}} \neq 0$. We mention however that it is not known whether $\widehat{\mathcal{F}} \neq 0$ implies the nonexistence of an Einstein-Kähler metric,

Received November 30, 1988.

Revised March 20, 1989.