Advanced Studies in Pure Mathematics 17, 1989 Algebraic Number Theory — in honor of K. Iwasawa pp. 471-492

Duality Theorems for Abelian Varieties over Z_p -extensions

Kay Wingberg

Dedicated to Kenkichi Iwasawa on his 70th birthday

Our concern in this paper is to define *p*-adic height pairings for an abelian variety A over an algebraic number field k on the niveau of a \mathbb{Z}_p -extension k_{∞} of k. We will show that there exists a map from the A-torsion submodule $T_A H^1(\mathcal{O}_{\infty}, \mathscr{A}(p))^*$ of the Pontrjagin dual of the *p*-Selmer group to the adjoint α of the corresponding module for the dual abelian variety A'. Here A denotes the completed group ring of $\operatorname{Gal}(k_{\infty}/k)$ over \mathbb{Z}_p and p is a prime number where A has good reduction. \mathscr{A} denotes the Néron model defined over the ring of integers \mathcal{O}_{∞} of k_{∞} . More generally, for $i \geq 0$ there are canonical maps

$$T_{\mathcal{A}}H^{i}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*} \longrightarrow \alpha(T_{\mathcal{A}}H^{2-i}(\mathcal{O}_{\infty}, \mathscr{A}'(p))^{*}).$$

These maps are quasi-isomorphisms if A has ordinary good reduction at p. In this case they can be regarded as non-degenerate pairings between the Λ -torsion submodules of $H^i(\mathcal{O}_{\infty}, \mathscr{A}(p))^*$ and of $H^{2-i}(\mathcal{O}_{\infty}, \mathscr{A}'(p))^*$. The pairing induced on a finite layer k_n/k coincides with the pairing defined by Schneider [8] (for i=1 and assuming that $H^1(\mathcal{O}_{\infty}, \mathscr{A}(p))^*$ is Λ -torsion and fulfills a certain semi-simplicity property).

Furthermore, we define an Iwasawa L-function in terms of characteristic polynomials of $T_{4}H^{i}(\mathcal{O}_{\infty}, \mathcal{A}(p))^{*}$:

$$\begin{split} L_p(A, \kappa, s) &= \prod_{i=0}^2 F_i(\kappa(\phi)^{s-1} - 1)^{(-1)^{i+1}}, \qquad s \in \mathbb{Z}_p, \\ F_i(t) &= p^{\mu_i} \det(t - (\phi - 1); T_A H^i(\mathcal{O}_{\infty}, \mathscr{A}(p))^* \otimes \mathbb{Q}_p), \end{split}$$

where κ is the character corresponding to k_{∞} , ϕ is a generator of Gal (k_{∞}/k) and μ_i is the μ -invariant of $H^i(\mathcal{O}_{\infty}, \mathscr{A}(p))^*$. In the ordinary case the pairing mentioned above leads to a functional equation for $L_p(\mathcal{A}, \kappa, s)$ with respect to $s \mapsto 2-s$. This generalizes a result of Schneider [8] and

Received July 1, 1987.