Advanced Studies in Pure Mathematics 17, 1989 Algebraic Number Theory — in honor of K. Iwasawa pp. 1–21

Explicit Universal Deformations of Galois Representations

N. Boston¹ and B. Mazur²

To K. Iwasawa on the occasion of his 70th birthday

Given a continuous absolutely irreducible representation

$$\overline{\rho} \colon G_{\boldsymbol{Q}} \longrightarrow GL_2(\boldsymbol{F}_p)$$

and a finite set of primes S which contains the primes of ramification for $\overline{\rho}$ and the prime number p, the notion of *universal deformation* for $(\overline{\rho}, S)$ was discussed in [M]. It was shown in [M] that there exists a complete noetherian local ring R with residue field F_p , uniquely determined up to canonical isomorphism, and a lifting

$$\rho: G_{\boldsymbol{\varrho}} \longrightarrow GL_2(R)$$

of $\overline{\rho}$ (unique up to strict equivalence—see § 3.1 below) which is unramified outside S, and satisfies a universal property vis à vis all liftings of $\overline{\rho}$ to $GL_2(\mathscr{A})$ which are unramified outside S, where \mathscr{A} ranges through the category of complete local noetherian rings with residue field F_{p} .

For $S = \{p\}$ and a class of representations $\overline{\rho}$ ("special dihedral representations") the universal deformation ring R was shown to be a power series ring in 3 variables over Z_p . If X is the "universal deformation space", i.e., the space of continuous homomorphisms from R to Z_p , then X is a 3-dimensional analytic manifold over Q_p and for each $x \in X$ specialization of ρ yields a Galois representation

$$\rho_x \colon G_Q \longrightarrow GL_2(Z_p)$$

(determined up to strict equivalence) which is a lifting of $\overline{\rho}$ and is unramified outside S. One of the aims of [M] was to embark on a systematic study of certain "natural subspaces" in X: loci of points $x \in X$ such that

Received July 31, 1987.

¹ Partially supported by the Sloan Foundation.

² Partially supported by the National Science Foundation.