Advanced Studies in Pure Mathematics 15, 1989 Automorphic Forms and Geometry of Arithmetic Varieties pp. 509–523

Multi-Tensors of Differential Forms on the Hilbert Modular Variety and on Its Subvarieties, II

Shigeaki Tsuyumine

Dedicated to Prof. Ichiro Satake and Prof. Friedrich Hirzebruch on their sixtieth birthdays

Let Γ_{κ} denote the Hilbert modular group associated with a totally real algebraic number field K of degree n > 1. Let X_{κ} be the Hilbert modular variety H^n/Γ_{κ} . The present paper is the continuation of a study [8], and our purpose is to extend the known range of K for which an assertion (\precsim) holds where

 (\bigstar) any subvariety in X_{κ} of codimension one is of general type.

We show that if $n \ge 3$, then (\measuredangle) holds only with finite exceptions. It was shown in our previous paper [8] that if the dimension $n \ge 3$ is fixed, then (\oiint) holds with finite exceptions. The main theorem of the present paper is as follows:

Theorem. $(\not a)$ holds if n > 26, or if n > 14 and the ideal in the maximal order of K generated by 2 is unramified at any prime of degree one.

As stated in [8], (\bigstar) has the consequent on the property of X_{κ} which we restate here for reader's convenience.

(I) Let X_{κ}° denote the smooth locus of X_{κ} , and let $\tilde{X}_{\kappa}^{(1)}$ be any smooth variety having X_{κ}° as an open subset. Then for any birational morphism φ of \tilde{X}_{κ} to a smooth variety, $\varphi|_{X_{\kappa}^{\circ}}$ gives rise to an open embedding.

(II) The birational automorphism group of X_{κ} (or equivalently, the automorphism group of the Hilbert modular function field over **C**) is equal to the automorphism group of X_{κ} , which is canonically isomorphic to a semidirect product $H_{\kappa}^{(2)} \rtimes \operatorname{Aut}(K/\mathbb{Q})$ where $H_{\kappa}^{(2)} = \{x \in H_{\kappa} | x^2 = 1\}$, H_{κ} denoting the ideal class group of K in the narrow sense.

As we see in §2, in order to prove Theorem we need to show

Received February 10, 1987.

¹⁾ ~ is missing in [8], Cor. 1, p. 660.