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Introduction 

Recent development in the theory of prehomogeneous vector spaces 
(in particular the works of Gyoja-Kawanaka [10] on prehomogeneous 
vector spaces defined over finite fields and of Igusa [17] on prehomoge
neous vector spaces defined over +J-adic number fields) has revealed a 
striking resemblance between .the theories over finite fields, +J-adic number 
fields, real and complex number fields and algebraic number fields, as is 
common in the theory of representations of algebraic groups. 

Now we give a brief sketch of the fundamental theorem in the theory 
of prehomogeneous vector spaces. Let K be one of the fields mentioned 
above and (G, p, V) be a K-regular prehomogeneous vector space 
(satisfying some additional conditions, if necessary). Take K-irreducible 
polynomials P 1, • • ·, P n defining the K-irreducible hypersurfaces contained 
in the singular set S. Let Q(Kx) be the set of quasi-characters of the 
multiplicative group Kx and Y(V(K)) the space of Schwartz-Bruhat 
functions on V(K). For an we Q(Kxt we can define a tempered distri
bution (zeta distribution) Z(w) on V(K) by analytic continuation of the 
integral 

Z(w)(</>)= f V<KJ-S<K> J1i w;(P;(x))<f>(x)d~(x) (</> e Y(V(K))), 

where d~(x) is a certain relatively G(K)-invariant measure on V(K)-S(K). 
Starting from the prehomogeneous vector space (G, p*, V*) dual to 
(G, p, V), we can obtain a tempered distribution Z*(w) (we Q(Kxt) on 
V*(K). 

Roughly speaking, the fundamental theorem states that the Fourier 
transform of the tempered distribution Z(w) coincides with Z*(w*) for 
certain w* up to a constant multiple r(w) depending meromorphically on 
w: Z(w)=r(w)Z*(w*). 
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