Advanced Studies in Pure Mathematics 15, 1989 Automorphic Forms and Geometry of Arithmetic Varieties pp. 465-508

On Functional Equations of Zeta Distributions

Fumihiro Sato

Dedicated to Prof. Ichiro Satake on his sixtieth birthday

Introduction

Recent development in the theory of prehomogeneous vector spaces (in particular the works of Gyoja-Kawanaka [10] on prehomogeneous vector spaces defined over finite fields and of Igusa [17] on prehomogeneous vector spaces defined over p-adic number fields) has revealed a striking resemblance between the theories over finite fields, p-adic number fields, real and complex number fields and algebraic number fields, as is common in the theory of representations of algebraic groups.

Now we give a brief sketch of the fundamental theorem in the theory of prehomogeneous vector spaces. Let K be one of the fields mentioned above and (G, ρ, V) be a K-regular prehomogeneous vector space (satisfying some additional conditions, if necessary). Take K-irreducible polynomials P_1, \dots, P_n defining the K-irreducible hypersurfaces contained in the singular set S. Let $\Omega(K^{\times})$ be the set of quasi-characters of the multiplicative group K^{\times} and $\mathscr{S}(V(K))$ the space of Schwartz-Bruhat functions on V(K). For an $\omega \in \Omega(K^{\times})^n$ we can define a tempered distribution (zeta distribution) $Z(\omega)$ on V(K) by analytic continuation of the integral

$$Z(\omega)(\phi) = \int_{V(K) - S(K)} \prod_{i=1}^{n} \omega_i(P_i(x))\phi(x)d_V^{\times}(x) \qquad (\phi \in \mathscr{S}(V(K))),$$

where $d_{V}^{\times}(x)$ is a certain relatively G(K)-invariant measure on V(K) - S(K). Starting from the prehomogeneous vector space (G, ρ^*, V^*) dual to (G, ρ, V) , we can obtain a tempered distribution $Z^*(\omega)$ ($\omega \in \Omega(K^{\times})^n$) on $V^*(K)$.

Roughly speaking, the fundamental theorem states that the Fourier transform of the tempered distribution $Z(\omega)$ coincides with $Z^*(\omega^*)$ for certain ω^* up to a constant multiple $\tilde{\gamma}(\omega)$ depending meromorphically on $\omega: \hat{Z}(\omega) = \tilde{\gamma}(\omega)Z^*(\omega^*)$.

Received March 3, 1987.