Advanced Studies in Pure Mathematics 15, 1989 Automorphic Forms and Geometry of Arithmetic Varieties pp. 351–364

T-Complexes and Ogata's Zeta Zero Values

Masa-Nori Ishida

Dedicated to Prof. Ichiro Satake and Prof. Friedrich Hirzebruch on their sixtieth birthdays

Introduction

In [T1], Tsuchihashi defined the notion of cusp singularities in arbitrary dimension. They include the Hilbert modular cusp singularities as a special case. In this paper, we will show the rationality of the zeta zero value $Z(C, \Gamma; 0)$ of the zeta function associated to a Tsuchihashi cusp singularity which was defined by Ogata [Og]. He gave a formula for the zero value as a sum of integrals of C^{∞} -functions described by the characteristic function of the convex cone C. By this formula, he showed that the value is a half-integer in odd-dimensional case [Og, Theorem 2.3]. In two dimensional case, the singularity is a Hilbert modular cusp and 12 times the zeta zero value is an integer by [Z].

By the construction of Tsuchihashi cusp singularities, they have toroidal resolutions and the exceptional sets are toric divisors in the sense of [S2]. In order to describe toric divisors, we introduce the notion of *T-complexes* which is essentially equal to that of the weighted dual graphs which appear in [T1]. A *T*-complex Σ is a category with a finite number of objects. We define a functor D_Q^0 from Σ to the category of Q-vector spaces. We show that the rational number field Q has a natural injection into the inductive limit ind $\lim_{\Sigma} D_Q^0$. We define a special element ω_{Σ} of ind $\lim_{\Sigma} D_Q^0$. When Σ is the *T*-complex associated to a toroidal resolution of a Tsuchihashi cusp singularity (C, Γ) , Ogata's formula means that there exists an explicit retraction ind $\lim_{\Sigma} D_Q^0 \otimes R \to R$ and the zero value $Z(C, \Gamma; 0)$ is the image of ω_{Σ} in R. By using an equality in Section 1 for a nonsingular complete fan, we show that ω_{Σ} is in the image of Q in ind $\lim_{\Sigma} D_Q^0$ for any *T*-complex Σ . This implies that the image of ω_{Σ} in Ris independent of the retraction and is a rational number.

Received December 4, 1986.