Advanced Studies in Pure Mathematics 15, 1989 Automorphic Forms and Geometry of Arithmetic Varieties pp. 171–210

Selberg-Ihara's Zeta function for *p*-adic Discrete Groups

Ki-ichiro Hashimoto^{*)} and Akira Hori

Dedicated to Prof. Friedrich Hirzebruch and Prof. Ichiro Satake on their sixtieth birthdays

Contents

- §0. Introduction
- § 1. Groups with axiom (G, l, I), (G, l, II)
- § 2. Tits system (G, B, N, S)
- § 3. p-adic groups
- § 4. Structure of the discrete subgroups Γ
- § 5. Γ -conjugacy classes
- § 6. Zeta function $Z_r(u; \rho)$
- § 7. Remarks
- § 8-12. Appendix: Bipartite trees, Hecke algebras, and flowers of groups

Introduction

0-1. Let G be PSL(2, **R**) and let $\Gamma (\subset G)$ be a Fuchsian group of the first kind. In [Sel], a zetafunction $Z_{\Gamma}(s)$ was introduced and proved to have many important properties which resemble those of usual L-functions, such as Euler product, functional equation, and analogue of Riemann Hypothesis. This function, now called with the name of Selberg, is generalized to any discrete subgroup Γ of a semi-simple Lie group of **R**-rank one, when G/Γ is compact by Gangolli [Gan], and later by Gangolli-Warner [G-W] to the case when G/Γ has a finite volume. Meanwhile, an analogue of $Z_{\Gamma}(s)$ was introduced by Ihara [I-1], for a cocompact torsion-free discrete subgroup Γ of PSL(2, K) or PL(2, K), where K is a **p**-adic field. Especially it was shown that Ihara's zeta function $Z_{\Gamma}(u)$ is a

Revised April 1, 1988.

Received November 30, 1987.

^{*)} The first author has been partially supported by Sonderforschungsbereich 170, 'Geometrie und Analysis', at Univ. Göttingen.