Cusps on Hilbert Modular Varieties and Values of L-Functions

Robert Sczech

§ 1.
Let s be a cusp, and $D=\sum S_{z}$ the corresponding cusp divisor on a Hilbert modular variety X. Every such a cusp belongs to a pair (M, V) where M is a lattice (isomorphic to Z^{n}), and V a group of units (isomorphic to \boldsymbol{Z}^{n-1}) in a totally real number field F of degree n over \boldsymbol{Q}, subject to the restriction that all elements in V are totally positive, and that V acts on M by multiplication, $V M=M$. However, the cusp divisor D is not unique for a given pair (M, V).

The divisor D is a normal crossing divisor, i.e. the irreducible components S_{τ} (hypersurfaces on X) intersect only in simple normal crossings. The complicated intersection behavior of the S_{τ} can be described in terms of a triangulation of the $(n-1)$-torus R^{n-1} / V. Every hypersurface S_{τ} corresponds to a vertex τ of this triangulation, and k different hypersurfaces $S_{\tau_{j}}(1 \leq j \leq k)$ intersect either in a ($n-k$)-dimensional submanifold S_{σ}, or the intersection set is empty. In the first case, σ is the unique simplex of the triangulation having the τ_{j} as vertices.

This description of the cusp divisor D was given for the first time by Hirzebruch [4] in the case of a real quadratic field $F(n=2)$. He showed in particular that the corresponding triangulation of the torus $S^{1}=R / V$ is given by the continued fraction expansion of a quadratic irrationality associated with M. In the same paper, Hirzebruch defined a rational number $\varphi(s)=\varphi(M, V)$ called the signature defect of s, in the following way: let Y be a small closed neighbourhood in X of the cusp s. Then Y is a manifold with boundary ∂Y which is a $T^{n}=\boldsymbol{R}^{n} / M$ bundle over the torus $T^{n-i}=\boldsymbol{R}^{n-1} / V$ completely determined by the pair (M, V). Let $L(Y)$ be the L-polynomial in the relative Chern classes of Y, and $\operatorname{sign}(Y)$ the signature of Y. From the signature theorem [1], it follows that

$$
\varphi(M, V):=L(Y)-\operatorname{sign}(Y)
$$

