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§ 0. Introduction 

Let G be a connected real semisimple Lie group, a an involution of 
G, and H an open subgroup of the fixed point group Gq. Then the 
homogeneous space G/H is called a semisimple symmetric space. In this 
paper, a K-finite simultaneous eigenfunction of the invariant differential 
operators on G/H is called a spherical function, where K is a maximal 
compact subgroup of G modulo center. It is known that such a spherical 
function has an asymptotic expansion at infinity, which really converges, 
as is shown by [HC] and [CM] in the group case and by [Ba] and [03] in 
general cases. In this paper, we will give the main non-vanishing terms 
in the expansion, that is, the growth order at infinity, by using some 
geometric interpretation. It plays an important role for the harmonic 
analysis on G/H. 

The idea here is similar as in [MO], where we describe discrete series 
for G/H. But we get a better result here than [MO, Lemma I] which is 
essential in [MO] and we can simplify the proof of the main theorem in 
[MO]. In fact we can omit complicated arguments according to the 
classification of root systems. The simpler proof is given in [Ma2]. 
Moreover for a given representation of G realized on a function space on 
G/H, we can tell in which principal series for G/H the representation is 
imbedded. 
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