Some Relations Among New Invariants of Prime Number \boldsymbol{p} Congruent to $1 \bmod 4$

Hideo Yokoi

In this paper, we shall define some invariants (i.e. number theoretic function) of prime p congruent to $1 \bmod 4$, and consider the problem to express the prime p by using those new invariants of p.

Namely, almost all such primes p are uniquely expressed as a polynomial of degree 2 of the first invariant n, which takes any value of natural numbers. Then, the coefficient of the term of degree 2 is the square of the second invariant u, which takes any value of natural numbers of the form $2^{\delta} \prod p_{i}^{e_{i}}\left(\delta=0\right.$ or 1 , and prime $\left.p_{i} \equiv 1 \bmod 4\right)$. The coefficients $2 a$ and b of terms of degree 1 and 0 respectively are invariants depending on u and satisfying the relations $a^{2}+4=b u^{2}$ and $0 \leqq a<(1 / 2) u^{2}$.

Moreover, with terms of these invariants, a necessary condition of solvability of the diophantine equation $x^{2}-p y^{2}= \pm 4 m$ for any natural number m, an explicit formula of the fundamental unit of the real quadratic field $\boldsymbol{Q}(\sqrt{p})$, and an estimate formula from below of the classnumber of $\boldsymbol{Q}(\sqrt{p})$ are given.

Throughout this paper, the following notation is used:
N : the set of all natural numbers
Z : the ring of all rational integers
$Q: \quad$ the rational number field
N : the absolute norm mapping

(-): Legendre-Jacobi-Kronecker symbol.

Theorem. Almost all rational prime p congruent to $1 \bmod 4$ are uniquely expressed in the form

$$
p=u^{2} n^{2} \pm 2 a n+b,
$$

where

$$
n \in N^{+}=\{0\} \cup N
$$

