Advanced Studies in Pure Mathematics 13, 1988 Investigations in Number Theory pp. 261–275

Quadratic Units and Congruences between Hilbert Modular Forms

Noburo Ishii

Introduction

Let F be a real quadratic field which has the totally positive fundamental unit. We put $F = Q(\sqrt{m})$ with a positive square free integer m. We denote by $[1, \sqrt{m}]$ the order of F generated by 1 and \sqrt{m} over the ring of integers Z. Let ε_m be the smallest unit of F such that $\varepsilon_m > 1$ and $\varepsilon_m \in [1, \sqrt{m}]$. We denote by K the number field generated by $\sqrt{-1}$ and $\sqrt[4]{\varepsilon_m}$ over the rational number field Q and by E the elliptic curve over F defined by the Weierstrass equation;

$$y^2 = x^3 + 4\varepsilon_m x.$$

We can attach to K (resp. to E) Hilbert modular forms over F of weight one (resp. of weight two) in a natural way.

The aim of the present paper is to show that the "quartic residuacity" of ε_m provides congruences between these Hilbert modular forms. Further we calculate their Fourier coefficients and express the decomposition law between K and F by them.

§1. Hilbert modular forms

Let the notation be as in introduction. Denote by G the galois group of the normal extension K of Q. Then G is of order 16 and is generated by the following three isomorphisms σ , φ and ρ :

$\sigma(\sqrt[4]{\varepsilon_m}) = \sqrt{-1} \sqrt[4]{\varepsilon_m},$	$\sigma(\sqrt{-1}) = \sqrt{-1};$
$\varphi(\sqrt[4]{\varepsilon_m}) = 1/\sqrt[4]{\varepsilon_m},$	$\varphi(\sqrt{-1}) = \sqrt{-1};$
$\rho(\sqrt[4]{\varepsilon_m}) = \sqrt[4]{\varepsilon_m},$	$\rho(\sqrt{-1}) = -\sqrt{-1}.$

It is easy to see that they satisfy the relation;

$$\sigma^4 = \varphi^2 = \rho^2 = 1$$
, $\varphi \sigma \varphi = \rho \sigma \rho = \sigma^3$, $\varphi \rho = \rho \varphi$.

Received June, 9, 1986.