Quadratic Units and Congruences between Hilbert Modular Forms

Noburo Ishii

Introduction

Let F be a real quadratic field which has the totally positive fundamental unit. We put $F=\boldsymbol{Q}(\sqrt{m})$ with a positive square free integer m. We denote by $[1, \sqrt{m}]$ the order of F generated by 1 and \sqrt{m} over the ring of integers Z. Let ε_{m} be the smallest unit of F such that $\varepsilon_{m}>1$ and $\varepsilon_{m} \in[1, \sqrt{m}]$. We denote by K the number field generated by $\sqrt{-1}$ and $\sqrt[4]{\varepsilon_{m}}$ over the rational number field Q and by E the elliptic curve over F defined by the Weierstrass equation;

$$
y^{2}=x^{3}+4 \varepsilon_{m} x
$$

We can attach to K (resp. to E) Hilbert modular forms over F of weight one (resp. of weight two) in a natural way.

The aim of the present paper is to show that the "quartic residuacity" of ε_{m} provides congruences between these Hilbert modular forms. Further we calculate their Fourier coefficients and express the decomposition law between K and F by them.

§ 1. Hilbert modular forms

Let the notation be as in introduction. Denote by G the galois group of the normal extension K of \boldsymbol{Q}. Then G is of order 16 and is generated by the following three isomorphisms σ, φ and ρ :

$$
\begin{array}{ll}
\sigma\left(\sqrt[4]{\varepsilon_{m}}\right)=\sqrt{-1} \sqrt[4]{\varepsilon_{m},}, & \sigma(\sqrt{-1})=\sqrt{-1} \\
\varphi\left(\sqrt[4]{\varepsilon_{m}}\right)=1 / \sqrt[4]{\varepsilon_{m}}, & \\
\rho(\sqrt{-1})=\sqrt{-1} \\
\rho\left(\sqrt[4]{\varepsilon_{m}}\right)=\sqrt[4]{\varepsilon_{m}}, &
\end{array}
$$

It is easy to see that they satisfy the relation;

$$
\sigma^{4}=\varphi^{2}=\rho^{2}=1, \quad \varphi \sigma \varphi=\rho \sigma \rho=\sigma^{3}, \quad \varphi \rho=\rho \varphi
$$

